Engliš, Miroslav Zeroes of the Bergman kernel of Hartogs domains. (English) Zbl 1038.32002 Commentat. Math. Univ. Carol. 41, No. 1, 199-202 (2000). Summary: We exhibit a class of bounded, strongly convex Hartogs domains with real-analytic boundary which are not Lu Qi-Keng, i.e. whose Bergman kernel function has a zero. Cited in 10 Documents MSC: 32A07 Special domains in \({\mathbb C}^n\) (Reinhardt, Hartogs, circular, tube) (MSC2010) 32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.) Keywords:Lu Qi-Keng conjecture; Hartogs domain; Bergman kernel × Cite Format Result Cite Review PDF Full Text: EuDML