zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Finite time synchronization of chaotic systems. (English) Zbl 1038.37504
Summary: Using finite time control techniques, continuous state feedback control laws are developed to solve the synchronization problem of two chaotic systems. We demonstrate that these two chaotic systems can be synchronized in finite time. Examples of Duffing systems and Lorenz systems are presented to verify our method.

37D45Strange attractors, chaotic dynamics
93D15Stabilization of systems by feedback
37N35Dynamical systems in control
Full Text: DOI
[1] Agiza, H. N.; Yassen, M. T.: Synchronization of Rössler and Chen chaotic dynamical systems using active control. Phys. lett. A 278, 191-197 (2001) · Zbl 0972.37019
[2] Bai, E. W.; Lonngen, K. E.: Synchronization of two Lorenz systems using active control. Chaos soliton. Fract. 8, 51-58 (1997)
[3] Bai, E. W.; Lonngen, K. E.: Synchronization and control of chaotic systems. Chaos soliton. Fract. 9, 1571-1575 (1999) · Zbl 0958.93513
[4] Bai, E. W.; Lonngen, K. E.: Sequential synchronization of two Lorenz systems using active control. Chaos soliton. Fract. 11, 1041-1044 (2000) · Zbl 0985.37106
[5] Bai, E. W.; Lonngen, K. E.; Sprott, J. C.: On the synchronization of electronic circuits that exhibit chaos. Chaos soliton. Fract. 13, 1515-1521 (2002) · Zbl 1005.34041
[6] Gong, X.; Lai, C. H.: On the synchronization of different chaotic oscillators. Chaos soliton. Fract. 11, 1231-1235 (2000) · Zbl 0955.34033
[7] Nijmerjer, H.: A dynamical control view on synchronization. Physica D 154, 219-228 (2001)
[8] Haimo, V. T.: Finite time controllers. SIAM J. Control optim. 24, 760-770 (1986) · Zbl 0603.93005
[9] Bhat S, Bernstein D. Finite-time stability of homogeneous systems, Proceedings of ACC, Albuquerque, NM; 1997. p. 2513--14