On B-robust instrumental variable estimation of the linear model with panel data. (English) Zbl 1038.62061

Summary: The aim of this paper is to demonstrate how to acquire robust consistent estimates of the linear model when the fundamental orthogonality condition is not fulfilled. With this end in view, we develop two estimation procedures: Two stage generalized M (2SGM) and robust generalized method of moments (RGMM). Both estimators are B-robust, i.e., their associated influence function is bounded, consistent and asymptotic normally distributed. Our simulation results indicate that the relatively efficient RGMM estimator (in regressions with heteroskedastic and/or autocorrelated errors) provides accurate parameter estimates of a panel data model with all variables subject to measurement errors, even if a substantial portion of the data is contaminated with aberrant observations. The traditional estimation techniques such as 2SLS and GMM break down when outliers corrupt the data.


62J05 Linear regression; mixed models
62F35 Robustness and adaptive procedures (parametric inference)
62H12 Estimation in multivariate analysis
62P20 Applications of statistics to economics
Full Text: DOI


[1] Arellano, M., Bond, S., 1988. Dynamic panel data estimation using DPD–a guide for users. IFS Working Paper No. 88/15.
[2] Beaton, A. E.; Tukey, J. W.: The Fitting of power series, meaning polynomials, illustrated on band-spectro-scopic data. Technometrics 16, 147-185 (1974) · Zbl 0282.62057
[3] Burnside, C., Eichenbaum, M., 1994. Small sample properties of generalized method of moments based wald tests. NBER Technical Working Paper No. 155, National Bureau of Economic Research, Cambridge, MA.
[4] Coakley, C. W.; Hettmansperger, T. P.: A bounded influence, high breakdown, efficient regression estimator. Journal of the American statistical association 88, 872-880 (1983) · Zbl 0783.62024
[5] Cristiano, L.J., den Haan, W.J., 1995. Small sample properties of GMM for business cycle analysis. NBER Technical Working Paper No. 177, National Bureau of Economic Research, Cambridge, MA.
[6] Den Haan, W.J., Levin, A., 1996. Inference from Parametric and Non-Parametric Covariance Matrix Estimation Procedures. NBER Technical Working Paper No. 195, National Bureau of Economic Research, Cambridge, MA.
[7] Donoho, D. L.; Huber, P. J.: The notion of breakdown point. A festschrift for erich L. Lehmann, 157-184 (1983)
[8] Griliches, Z.; Hausman, J. A.: Errors in variables in panel data. Journal of econometrics 31, 93-118 (1986)
[9] Hampel, F. R.; Ronchetti, E. M.; Rousseeuw, P. J.; Stahel, W. A.: Robust statistics. The approach based on influence functions. (1986) · Zbl 0593.62027
[10] Hansen, L. P.: Large sample properties of generalized method of moments estimators. Econometrica 50, No. 4, 1029-1054 (1982) · Zbl 0502.62098
[11] Hinloopen, J., Wagenvoort, J.L.M., 1995. Robust estimation, an example. EUI Working Papers in Economics, ECO No. 95/2, European University Institute, Florence.
[12] Hinloopen, J.; Wagenvoort, J. L. M.: On the computation and efficiency of a HBP-GM estimator: some simulation results. Computational statistics and data analysis 25, 1-15 (1997) · Zbl 0900.62277
[13] Huber, P. J.: Robust estimation of a location parameter. Annual of mathematical statistics 35, 73-101 (1964) · Zbl 0136.39805
[14] Kocherlakota, N. R.: On tests of representative consumer asset pricing models. Journal of monetary economics 26, 285-304 (1990)
[15] Krasker, W. S.: Two-stage bounded-influence estimators for simultaneous-equations models. Journal of business and economic statistics 4, No. 4, 437-444 (1986)
[16] Krasker, W. S.; Welsch, R. E.: Resistant estimation for simultaneous-equations models using weighted instrumental variables. Econometrica 53, No. 6, 1475-1488 (1985) · Zbl 0583.62095
[17] Krishnakumar, J., 1995. A general methodology of robust estimation for panel data models. Cahier 95.02, University of Geneva, Department of Econometrics. · Zbl 0829.62103
[18] Mallows, C.L., 1975. On some topics in robustness. Technical Memorandum, Bell Telephone Laboratories, Murray Hill, NJ. · Zbl 0275.05125
[19] Maronna, R. A.; Yohai, V. J.: Asymptotic behaviour of general M-estimates for regression and scale with random carries. Zeitschrift fur wahrscheinlichkeitstheorie und verwandte gebiete 58, 7-20 (1981) · Zbl 0451.62031
[20] Martin, R.D., Wang, J., 1999. Finite sample properties of robust estimators for linear regression. Technical Report, MathSoft Inc., Seattle, WA.
[21] Mátyás, L.; Sevestre, P.: The econometrics of panel data, handbook of theory and applications. (1992) · Zbl 1137.62089
[22] Ronchetti, E., Trojani, F., 1999. Robust inference with GMM estimators. Department of Econometrics, University of Geneva, unpublished Manuscript. · Zbl 0996.62026
[23] Rousseeuw, P. J.: Least median of squares regression. Journal of the American statistical association 79, No. 388, 871-880 (1984) · Zbl 0547.62046
[24] Rousseeuw, P. J.: Multivariate estimation with high breakdown point. Mathematical statistics and applications, vol. B, 283-297 (1985) · Zbl 0609.62054
[25] Rousseeuw, P. J.; Leroy, A. M.: Robust regression and outlier detection. (1987) · Zbl 0711.62030
[26] Rousseeuw, P. J.; Van Zomeren, B. C.: Unmasking multivariate outliers and leverage points. Journal of the American statistical association 85, No. 411, 633-639 (1990)
[27] Simpson, D. G.; Ruppert, D.; Carroll, R. J.: On one-step GM estimates and stability of inferences in linear regression. Journal of the American statistical association 87, No. 418, 439-450 (1992) · Zbl 0781.62104
[28] Spanos, A.: Statistical foundations of econometric modelling. (1986)
[29] Spanos, A.: On theory testing in econometrics: the case of the efficient market hypothesis. (1993)
[30] Theil, H.: Principles of econometrics. (1971) · Zbl 0221.62002
[31] Wagenvoort, R., Waldmann, R., 1998. On B-robust instrumental variable estimation of the linear model. IGIER Working Paper No. 131, IGIER Università Bocconi, Milan, Italy.
[32] White, H.: Instrumental variables regression with independent observations. Econometrica 50, No. 2, 483-499 (1982) · Zbl 0518.62094
[33] Zellner, A.: An efficient method of estimating seemingly unrelated regressions and tests of aggregation bias. Journal of the American statistical association 57, 348-368 (1962) · Zbl 0113.34902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.