×

Higher-order sliding mode stabilization for a class of nonholonomic perturbed systems. (English) Zbl 1038.93063

This paper gives a new necessary and sufficient condition on the perturbation vectorfield in order to put a nonholonomic perturbed system into a perturbed one-chained form. Two different sliding mode control strategies are designed to robustly stabilize this chained system:
– one providing a practical stabilization
– the other performing a finite time convergence.
A numerical simulation of an example of a monocycle-type mobile robot is provided.

MSC:

93C73 Perturbations in control/observation systems
93D15 Stabilization of systems by feedback
93B12 Variable structure systems
93D21 Adaptive or robust stabilization
70F25 Nonholonomic systems related to the dynamics of a system of particles
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Astolfi, A., Exponential stabilization of a wheeled mobile robot via discontinuous control, ASME Journal of Dynamic Systems, Measurement, and Control, 121, 121-125 (1999)
[2] Bartolini, G.; Ferrara, A.; Usai, E., Chattering avoidance by second-order sliding mode control, IEEE Transactions on Automatic Control, 43, 2, 241-246 (1998) · Zbl 0904.93003
[3] Bartolini, G., Levant, A., Pisano, A., & Usai, E. (1999). 2-sliding mode with adaptation. In Proceedings of the seventh IEEE Mediterranean conference on control and systems; Bartolini, G., Levant, A., Pisano, A., & Usai, E. (1999). 2-sliding mode with adaptation. In Proceedings of the seventh IEEE Mediterranean conference on control and systems · Zbl 1353.93021
[4] Bennani, M., & Rouchon, P., 1995. Robust stabilization of flat and chained systems. In Proceedings of the European control conference; Bennani, M., & Rouchon, P., 1995. Robust stabilization of flat and chained systems. In Proceedings of the European control conference
[5] Brockett, R. W., Asymptotic stability and feedback stabilization, (Brockett, R. W.; Millman, R. S.; Sussmann, H. J., Differential geometric control theory (1983), Birkhauser: Birkhauser Basel) · Zbl 0528.93051
[6] Canudas de Wit, C., & Khenouf, H. H. (1995). Quasi continuous stabilizing controllers for nonholonomic systems: Design and robustness considerations. In Proceedings of the European control conference; Canudas de Wit, C., & Khenouf, H. H. (1995). Quasi continuous stabilizing controllers for nonholonomic systems: Design and robustness considerations. In Proceedings of the European control conference
[7] Emel’yanov, S. V.; Korovin, S. V.; Levantovsky, L. V., Higher-order sliding modes in control systems, Differential Equations, 29, 11, 1627-1647 (1993)
[8] Fliess, M.; Levine, J.; Martin, P.; Rouchon, P., Flatness and defect of non-linear systemsIntroductory theory and examples, International Journal of Control, 61, 6, 1327-1361 (1995) · Zbl 0838.93022
[9] Floquet, T. (2000). Contributions à la commande par modes glissants d’ordre supérieur; Floquet, T. (2000). Contributions à la commande par modes glissants d’ordre supérieur
[10] Floquet, T., Barbot, J. P., & Perruquetti, W. (2000). One-chained form and sliding mode stabilization for a nonholonomic perturbed system. In Proceedings of the American control conference; Floquet, T., Barbot, J. P., & Perruquetti, W. (2000). One-chained form and sliding mode stabilization for a nonholonomic perturbed system. In Proceedings of the American control conference · Zbl 1038.93063
[11] Hespanha, J. P.; Morse, A. S., Stabilization of nonholonomic integrators via logic-based switching, Automatica, 35, 385-393 (1999) · Zbl 0931.93055
[12] Jiang, Z. P., Robust exponential regulation of nonholonomic systems with uncertainties, Automatica, 36, 189-209 (2000) · Zbl 0952.93057
[13] Jiang, Z. P.; Nijmeijer, H., A recursive technique for tracking control of nonholonomic systems in chained form, IEEE Transactions on Automatic Control, 44, 2, 265-279 (1999) · Zbl 0978.93046
[14] Kolmanovsky, I.; McClamroch, N. H., Developments in nonholonomic control problems, IEEE Control Systems Magazine, 15, 6, 20-36 (1995)
[15] Levant, A., Sliding order and sliding accuracy in sliding mode control, International Journal of Control, 58, 6, 1247-1263 (1993) · Zbl 0789.93063
[16] Levant, A., Universal siso sliding-mode controllers with finite-time convergence, IEEE Transactions on Automatic Control, 46, 9, 1447-1451 (2001) · Zbl 1001.93011
[17] M’Closkey, R.; Murray, R., Exponential stabilization of driftless nonlinear control systems using homogeneous feedback, IEEE Transactions on Automatic Control, 42, 614-628 (1997) · Zbl 0882.93066
[18] Monaco, S., & Normand-Cyrot, D. (1992). An introduction to motion planning under multirate digital control. In Proceedings of the IEEE control and decision conference; Monaco, S., & Normand-Cyrot, D. (1992). An introduction to motion planning under multirate digital control. In Proceedings of the IEEE control and decision conference
[19] Morin, P.; Samson, C., Exponential stabilization of nonlinear driftless systems with robustness to unmodeled dynamics, ESAIM:COCV, 4, 1-35 (1999) · Zbl 0919.93059
[20] Murray, R.; Li, Z.; Sastry, S., A mathematical introduction to robotic manipulation (1994), CRC Press, Inc: CRC Press, Inc Boca Raton, FL · Zbl 0858.70001
[21] Murray, R.; Sastry, S., Nonholonomic motion planningsteering using sinusoids, IEEE Transactions on Automatic Control, 38, 700-716 (1993) · Zbl 0800.93840
[22] Pomet, J. B., Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift, Systems and Control Letters, 18, 147-158 (1992) · Zbl 0744.93084
[23] Samson, C., Control of chained systems: Application to path following and time varying point-stabilization of mobile robots, IEEE Transactions on Automatic Control, 40, 1 (1995) · Zbl 0925.93631
[24] Utkin, V., Sliding modes in optimization and control (1992), Springer: Springer New York · Zbl 0748.93044
[25] Walsh, G. C.; Bushnell, L. G., Stabilization of multiple input chained form control systems, Systems and Control Letters, 25, 227-234 (1995) · Zbl 0877.93100
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.