zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive stabilization of uncertain nonholonomic systems by state and output feedback. (English) Zbl 1038.93079
This paper addresses constructive adaptive state feedback control strategies for stabilizing a class of uncertain non-holonomic chained systems without imposing any restrictions on the system order or the growth of drift nonlinearities. Control laws are developed that use state scaling and backstepping. An innovative adaptive switching approach is proposed to prevent possible escape to infinity in finite time of system states and to guarantee boundedness of all signals in the system. A nonlinear observer-based output feedback design is proposed when only partial system states are measurable. A filtered observer rather than the customary linear observer is used to handle technical problems associated with the presence of unavailable states in the regressor matrix. The authors prove that all system states converge globally to the origin and that the estimated parameters remain bounded. Simulation results with a bilinear model of a mobile robot demonstrate the effectiveness of the authors’ approach.

MSC:
93D21Adaptive or robust stabilization
70F25Nonholonomic systems (particle dynamics)
93C85Automated control systems (robots, etc.)
WorldCat.org
Full Text: DOI
References:
[1] Arnold, V. I.: Geometrical methods in the theory of ordinary differential equations. (1987)
[2] Astolfi, A.: Discontinuous control of nonholonomic systems. Systems and control letters 27, 37-45 (1996) · Zbl 0877.93107
[3] Astolfi, A., & Schaufeberger, W. (1996). State and output feedback stabilization of multiple chained systems with discontinuous control. In Proceedings of the 35th IEEE conference on decision &control, Kobe, Japan (pp. 1443-1447).
[4] Brockett, R. W. (1983). Asymptotic stability and feedback stabilization. In Differential geometry control theory (pp. 181-208). Basel: Birkhauser. · Zbl 0528.93051
[5] Canudas de Wit, C., Berghuis, H., & Nijmeijer, H. (1994). Practical stabilization of nonlinear systems in chained form. In Proceedings of the 33rd IEEE conference on decision &control, Lake Buena Vista, FL, USA (pp. 3475-3480).
[6] Colbaugh, R., Barany, R., & Glass, K. (1996). Adaptive control of nonholonomic mechanical systems. In Proceedings of the 35th IEEE conference on decision &control, Kobe, Japan (pp. 1428-1434). · Zbl 0875.70132
[7] Dixon, W. E.; Dawson, D. M.; Zergeroglu, E.; Behal, A.: Nonlinear control of wheeled mobile robots. Lecture notes in control and information sciences 262 (2001) · Zbl 0994.93500
[8] Do, Kahduc.; Pan, J.: Adaptive global stabilization of nonholonomic systems with strong nonlinear drifts. Systems & control letters 46, 195-205 (2002) · Zbl 0994.93055
[9] Fierro, R., & Lewis, F. L. (1995). Control of a nonholonomic mobile robot: Backstepping kinematics into dynamics. In Proceedings of the 34th IEEE conference on decision &control, New Orleans, LA, USA (pp. 1722-1727). · Zbl 0897.70019
[10] Fliess, M.; Levine, J.; Martin, P.; Rouchon, P.: Flatness and defect of nonlinear systemsintroductory theory and examples. International journal of control 61, 1327-1361 (1995) · Zbl 0838.93022
[11] Ge, S. S.; Sun, A.; Lee, T. H.; Spong, M. W.: Feedback linearization and stabilization of second-order nonholonomic chained systems. International journal of control 74, No. 14, 1383-1392 (2001) · Zbl 1026.93047
[12] Ge, S. S.; Wang, J.; Lee, T. H.; Zhou, G. Y.: Adaptive robust stabilization of dynamic nonholonomic chained systems. Journal of robotic systems 18, No. 3, 119-133 (2001) · Zbl 1033.70500
[13] Hespanha, J. P., Liberzon, S., & Morse, A. S. (1999). Towards the supervisory control of uncertain nonholonomic systems. In Proceedings of the 1999 American control conference, San Diego, CA, USA (pp. 3520-3524).
[14] Huo, W.; Ge, S. S.: Exponential stabilization of nonholonomic systemsan eni approach. International journal of control 74, No. 15, 1492-1500 (2001) · Zbl 1017.93021
[15] Jiang, Z. P.: Robust exponential regulation of nonholonomic systems with uncertainties. Automatica 36, No. 2, 189-209 (2000) · Zbl 0952.93057
[16] Jiang, Z. P.; Nijmeijer, H.: A recursive technique for tracking control of nonholonomic systems in chained form. IEEE transactions on automatic control 44, No. 2, 265-279 (1999) · Zbl 0978.93046
[17] Kolmanovsky, I.; Mcclamroch, N. H.: Developments in nonholonomic control problems. IEEE control system magazine 15, No. 6, 20-36 (1995)
[18] Krstic, M.; Kanellakopoulos, I.; Kokotovic, P. V.: Nonlinear and adaptive control design. (1995)
[19] M’Closkey, R. T., & Murray, R. M. (1992). Convergence rate for nonholonomic systems in power form. In Proceedings of the American control conference, Chicago, USA (pp. 2489-2493).
[20] Morin, P., Pomet, J. B., & Samson, C. (1998). Developments in time-varying feedback stabilization of nonlinear systems. In Preprints of nonlinear control systems design symposium (NOLCOS’98), Enschede (pp. 587-594).
[21] Murray, R. M.: Control of nonholonomic systems using chained form. Fields institute of communications 1, 219-245 (1993) · Zbl 0788.70018
[22] Murray, R. M.; Sastry, S. S.: Nonholonomic motion planningsteering using sinusoids. IEEE transactions on automatic control 38, 700-716 (1993) · Zbl 0800.93840
[23] Samson, C.: Time-varying feedback stabilization of a nonholonomic wheeled mobile robot. International journal of robotics research 12, 55-66 (1993)
[24] Sontag, E. D.: Smooth stabilization implies coprime factorization. IEEE transactions on automatic control 34, No. 4, 435-443 (1989) · Zbl 0682.93045
[25] Sordalen, O. J.; De Wit, C. Canudas: Exponential stabilization of nonholonomic chained systems. IEEE transactions on automatic control 40, No. 1, 35-49 (1995)
[26] Sun, Z.; Ge, S. S.; Huo, W.; Lee, T. H.: Stabilization of nonholonomic chained systems via nonregular feedback linearization. System & control letters 44, 279-289 (2001) · Zbl 0986.93016
[27] Walsh, G. C.; Bushnell, L. G.: Stabilization of multiple input chained form control systems. System & control letters 25, 227-234 (1995) · Zbl 0877.93100