Černe, Miran Maximal plurisubharmonic functions and the polynomial hull of a completely circled fibration. (English) Zbl 1039.32014 Ark. Mat. 40, No. 1, 27-45 (2002). Let \(\Delta\) denote the closed unit disk in \(\mathbb C\), let \(B\) denote the open unit ball in \(\mathbb C^m\) and let \(X\) be a compact subset of \((\partial B) \times \mathbb C^n\). Put \(X_z=\{w \in \mathbb C^n; (z,w) \in X \}\).The author proves several results concerning the structure of the polynomial convex hull \(\widehat X\) of \(X\). One example: suppose that \(X_z\) is the closure of a completely circled pseudoconvex domain, \(X\) admits a nonnegative continuous defining function \(\rho\), \(X=\{(z,w) \in (\partial B) \times \mathbb C^n; \rho(z,w) \leq 1 \}\), \(\rho\) is homogeneous plurisubharmonic in \(w\) for any fixed \(z\), and \(\rho(z,w) \neq 0\) if \(w \neq 0\). Then, through any interior point \((z_0,w_0)\) of \(\widehat X\) passes an analytic disk parametrized by a holomorphic mapping \(f:\Delta \rightarrow {\overline B} \times \mathbb C^n\) which is smooth up to the boundary of \(\Delta\) and \(f(\partial \Delta) \subset X\). Reviewer: Viorel Vâjâitu (Bucureşti) Cited in 5 Documents MSC: 32E20 Polynomial convexity, rational convexity, meromorphic convexity in several complex variables 32W20 Complex Monge-Ampère operators Keywords:polynomial convex hull; maximal plurisubharmonic functions PDF BibTeX XML Cite \textit{M. Černe}, Ark. Mat. 40, No. 1, 27--45 (2002; Zbl 1039.32014) Full Text: DOI OpenURL References: [1] Alexander, H., Polynomial hulls of graphs,Pacific J. Math. 147 (1991), 201–212. · Zbl 0667.32011 [2] Alexander, H. andWermer, J., Polynomial hulls with convex fibers,Math. Ann. 266 (1981), 243–257. [3] Bedford, E., Survey of pluri-potential theory, inSeveral Complex Variables: Proceedings of the Mittag-Leffler Institute, 1987–1988 (Fornæss, J. E., ed.), Mathematical Notes38, pp. 48–97, Princeton Univ. Press, Princeton, N. J., 1993. · Zbl 0786.31001 [4] Bedford, E. andKalka, M., Foliations and complex Monge-Ampère quations,Comm. Pure Appl. Math. 30 (1977), 543–571. · Zbl 0351.35063 [5] Bedford, E. andTaylor, B. A., The Dirichlet problem for a complex Monge-Ampère equation,Invent. Math. 37 (1976), 129–134. · Zbl 0325.31013 [6] Černe, M., Stationary discs of fibrations over the circle,Internat. J. Math. 6 (1995), 805–823. · Zbl 0841.32007 [7] Černe, M., Analytic varieties with boundaries in totally real tori,Michigan Math. J. 45 (1998), 243–256. · Zbl 1002.32012 [8] Černe, M., Analytic discs in the polynomial hull of a disc fibration over the sphere,Bull. Austral. Math. Soc.,62, (2000), 403–406. · Zbl 0970.32012 [9] Forstnerič, F., Polynomial hulls of sets fibered over the circle,Indiana Univ. Math. J. 37 (1988), 869–889. · Zbl 0647.32017 [10] Gamelin, T. W.,Uniform Algebras and Jensen Measures, London Math. Soc. Lecture Notes Ser.32, Cambridge Univ. Press, Cambridge-New York, 1978. [11] Garnett, J. B.,Bounded Analytic Functions, Academic Press, Orlando, Fla. 1981. · Zbl 0469.30024 [12] Klimek, M.,Pluripotential Theory, London Math. Soc. Monographs6, Oxford Univ. Press, Oxford, 1991. [13] Lelong, P., Fonction de Green pluricomplexe et lemmes de Schwarz dans les espaces de Banach,J. Math. Pures Appl. 68 (1989), 319–347. · Zbl 0633.32019 [14] Poletsky E. A., Plurisubharmonic functions as solutions of variational problems, inSeveral Complex Variables and Complex Geometry (Santa Cruz, Calif., 1989) (Bedford, E., D’Angelo, J. P., Greene, R. E. and Krantz, S. G., eds.), Proc. Symp. Pure Math.52, Part 1, pp. 163–171, Amer. Math. Soc., Providence, R. I., 1991. [15] Poletsky, E. A., Holomorphic currents,Indiana Univ. Math. J. 42 (1993), 85–144. · Zbl 0811.32010 [16] Slodkowski, Z., Polynomial hulls with convex sections and interpolating spaces,Proc. Amer. Math. Soc. 96 (1986), 255–260. · Zbl 0588.32017 [17] Slodkowski, Z., Polynomial hulls inC 2 and quasicircles,Ann. Scuola Norm. Sup. Pisa Cl. Sci. 16 (1989), 367–391. · Zbl 0703.32007 [18] Slodkowski, Z., Polynomial hulls with convex fibers and complex geodesics,J. Funct. Anal. 94, (1990), 156–176. · Zbl 0717.32009 [19] Walsh, J. B., Continuity of envelopes of plurisubharmonic functions,J. Math. Mech. 18 (1968), 143–148. · Zbl 0159.16002 [20] Whittlesey, M. A., Polynomial hulls with disk fibers over the ball inC 2,Michigan Math. J. 44 (1997), 475–494. · Zbl 0898.32008 [21] Whittlesey, M. A., Riemann surfaces in fibered polynomial hulls,Ark. Mat. 37 (1999), 409–423. · Zbl 1028.32005 [22] Whittlesey, M. A., Polynomial hulls andH control for a hypoconvex constraint,Math. Ann. 317 (2000), 677–701. · Zbl 0989.93034 [23] Whittlesey, M. A., Polynomial hulls, an optimization problem and the Kobayashi metric in a hypoconvex domain,Preprint, 1999. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.