zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Nondensely defined evolution impulsive differential inclusions with nonlocal conditions. (English) Zbl 1039.34056
The authors study a problem for evolution impulsive differential inclusions with nonlocal conditions of the form $y'(t) \in Ay(t) + F(t,y(t))$, $t \in J=[0,b]$, $t \neq t_k$, $k=1,\dots,m$, $y(t_k^+)-y(t_k^-)= I_k(y(t_k^-))$, $k=1,\dots,m$, $y(0)+g(y)=y_0$, where $A:D(A)\subset E \to E$ is a nondensely defined closed linear operator, $F:J \times E \to P(E)$ is a multivalued map with nonempty values, $g:C(J',E) \to E$ ($J'=J-\{t_1,\dots,t_m\}$), $I_k:E \to \overline{D(A)} $ are functions, $y_0 \in E$ and $E$ is a separable Banach space. The authors establish sufficient conditions for the existence of integral solutions for the convex and for the nonconvex case by using fixed-point theorems and a selection theorem.

34G25Evolution inclusions
34A37Differential equations with impulses
Full Text: DOI
[1] Agur, Z.; Cojocaru, L.; Mazaur, G.; Anderson, R. M.; Danon, Y. L.: Pulse mass measles vaccination across age cohorts. Proc. nat. Acad. sci. USA 90, 11698-11702 (1993)
[2] Ahmed, N. U.: Systems governed by impulsive differential inclusions on Hilbert spaces. Nonlinear anal. 45, 693-706 (2001) · Zbl 0995.34053
[3] Ahmed, N. U.: Optimal control for impulsive systems in Banach spaces. Internat. J. Differ. equations appl. 1, 37-52 (2000) · Zbl 0959.49023
[4] Akca, H.; Boucherif, A.; Covachev, V.: Impulsive functional differential equations with nonlocal conditions. Internat. J. Math. math. Sci. 29, 251-256 (2002) · Zbl 1005.34072
[5] Arendt, W.: Vector valued Laplace transforms and Cauchy problems. Israel J. Math. 59 (1987) · Zbl 0637.44001
[6] Aubin, J. P.; Cellina, A.: Differential inclusions. (1984) · Zbl 0538.34007
[7] Benchohra, M.; Ntouyas, S. K.: Existence of mild solutions for certain delay semilinear evolution inclusions with nonlocal condition. Dynam. systems appl. 9, 405-412 (2000) · Zbl 0974.34076
[8] Benchohra, M.; Ntouyas, S. K.: Nonlocal Cauchy problems for neutral functional differential and integrodifferential inclusions in Banach spaces. J. math. Anal. appl. 258, 573-590 (2001) · Zbl 0982.45008
[9] Benchohra, M.; Ntouyas, S. K.: Existence of mild solutions of semilinear evolution inclusions with nonlocal conditions. Georgian math. J. 7, 221-230 (2000) · Zbl 0960.34049
[10] Bohnenblust, H. F.; Karlin, S.: On a theorem of ville. Annals of mathematics studies 24, 155-160 (1950) · Zbl 0041.25701
[11] Bressan, A.; Colombo, G.: Extensions and selections of maps with decomposable values. Studia math. 90, 69-86 (1988) · Zbl 0677.54013
[12] Byszewski, L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. math. Anal. appl. 162, 494-505 (1991) · Zbl 0748.34040
[13] Castaing, C.; Valadier, M.: Convex analysis and measurable multifunctions. Lecture notes in mathematics 580 (1977) · Zbl 0346.46038
[14] Covitz, H.; Jr., S. B. Nadler: Multivalued contraction mappings in generalized metric spaces. Israel J. Math. 8, 5-11 (1970) · Zbl 0192.59802
[15] Da Prato, G.; Sinestrari, E.: Differential operators with non-dense domains. Ann. scuola norm. Sup. Pisa sci. 14, 285-344 (1987) · Zbl 0652.34069
[16] Deimling, K.: Multivalued differential equations. (1992) · Zbl 0760.34002
[17] Deng, K.: Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions. J. math. Anal. appl. 179, 630-637 (1993) · Zbl 0798.35076
[18] Frigon, M.; Granas, A.: Théorèmes d’existence pour des inclusions différentielles sans convexité. C. R. Acad. sci. Paris ser. I 310, 819-822 (1990) · Zbl 0731.47048
[19] Górniewicz, L.: Topological fixed point theory of multivalued mappings. Mathematics and its applications 495 (1999) · Zbl 0937.55001
[20] Hu, Sh.; Papageorgiou, N.: Handbook of multivalued analysis, vol. I: theory. (1997) · Zbl 0887.47001
[21] Kellerman, H.; Hieber, M.: Integrated semigroups. J. funct. Anal. 84, 160-180 (1989) · Zbl 0689.47014
[22] Kirane, M.; Rogovchenko, Y. V.: Comparison results for systems of impulsive parabolic equations with applications to population dynamics. Nonlinear anal. 28, 263-276 (1997) · Zbl 0865.35007
[23] Kisielewicz, M.: Differential inclusions and optimal control. (1991) · Zbl 0731.49001
[24] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S.: Theory of impulsive differential equations. (1989) · Zbl 0719.34002
[25] Lasota, A.; Opial, Z.: An application of the Kakutani--Ky Fan theorem in the theory of ordinary differential equations. Bull. acad. Polish sci. Ser. sci. Math. astronom. Phys. 13, 781-786 (1965) · Zbl 0151.10703
[26] Samoilenko, A. M.; Perestyuk, N. A.: Impulsive differential equations. (1995) · Zbl 0837.34003
[27] Smart, D. R.: Fixed point theorems. (1974) · Zbl 0297.47042
[28] Zeidler, E.: Nonlinear functional analysis and applications, fixed point theorems. (1986) · Zbl 0583.47050