How do the spatial structure and time delay affect the persistence of a polluted species. (English) Zbl 1039.34073

The author analyzes toxicant-population models with discrete diffusion or time delay. It is shown that there exists a threshold for each system such that below the threshold the population is uniformly persistent, and above the threshold the population goes to extinction. It is shown that dispersal allows a large threshold, that is, dispersal can increase the endurance effectiveness of the population subject to a toxicant, and time delay has no effect on the threshold result.


34K60 Qualitative investigation and simulation of models involving functional-differential equations
34K20 Stability theory of functional-differential equations
34K25 Asymptotic theory of functional-differential equations
92D25 Population dynamics (general)
Full Text: DOI


[1] DOI: 10.1111/j.1523-1739.1991.tb00384.x · doi:10.1111/j.1523-1739.1991.tb00384.x
[2] Diamond J., Conservation for the Twenty-first Century (1989)
[3] DOI: 10.1016/0304-3800(83)90019-4 · doi:10.1016/0304-3800(83)90019-4
[4] DOI: 10.1007/BF00275908 · Zbl 0548.92019 · doi:10.1007/BF00275908
[5] Hallam T.G., J. Math. Biol., IA pp 327– (1986) · Zbl 0606.92022 · doi:10.1007/BF00275641
[6] Zhien Ma, Bull. Math. Biol. 51 pp 311– (1989) · Zbl 0676.92010 · doi:10.1007/BF02460110
[7] DOI: 10.1016/0025-5564(90)90103-6 · Zbl 0714.92027 · doi:10.1016/0025-5564(90)90103-6
[8] DOI: 10.1007/BF00168006 · Zbl 0745.92028 · doi:10.1007/BF00168006
[9] DOI: 10.1006/jmaa.1997.5387 · Zbl 0905.92030 · doi:10.1006/jmaa.1997.5387
[10] Yucun C., Chinese Wildlife pp 3– (1994)
[11] Xiao Y.N., System Science and Mathematical Science 12 pp 344– (1999)
[12] Beretta E., Bull. Math. Biol. 49 pp 431– (1987)
[13] Hale J.K., Theory of Functional Differential Equations (1977) · Zbl 0352.34001
[14] Environment Pollution and Plant (1978)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.