Caffarelli, Luis A.; Huang, Qingbo Estimates in the generalized Campanato-John-Nirenberg spaces for fully nonlinear elliptic equations. (English) Zbl 1039.35034 Duke Math. J. 118, No. 1, 1-17 (2003). The authors consider estimates in the generalized Campanato-John-Nirenberg spaces \(\text{BMO}_\Psi\) for solutions to the fully nonlinear elliptic equation \(F(x, D^2u)= f(x),\) where \(\Omega\) is a bounded domain in \(\mathbb{R}^N\). To obtain \(\text{BMO}_\Psi\)-estimates the authors use a perturbation argument and first prove that the Evans-Krylov estimates imply Campanato inequalities. Reviewer: Messoud A. Efendiev (Berlin) Cited in 27 Documents MSC: 35J60 Nonlinear elliptic equations 35B65 Smoothness and regularity of solutions to PDEs Keywords:Campanato-John-Nirenberg space; Evans-Krylov estimate; nonlinear elliptic equation PDF BibTeX XML Cite \textit{L. A. Caffarelli} and \textit{Q. Huang}, Duke Math. J. 118, No. 1, 1--17 (2003; Zbl 1039.35034) Full Text: DOI References: [1] P. Acquistapace, On \(BMO\) regularity for linear elliptic systems , Ann. Mat. Pura Appl. (4) 161 (1992), 231–269. · Zbl 0802.35015 [2] L. A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations , Ann. of Math. (2) 130 (1989), 189–213. JSTOR: · Zbl 0692.35017 [3] L. A. Caffarelli and X. Cabré, Fully Nonlinear Elliptic Equations , Amer. Math. Soc. Colloq. Publ. 43 , Amer. Math. Soc., Providence, 1995. · Zbl 0834.35002 [4] L. Caffarelli, M. G. Crandall, M. Kocan, and A. Swiech, On viscosity solutions of fully nonlinear equations with measurable ingredients , Comm. Pure Appl. Math. 49 (1996), 365–397. · Zbl 0854.35032 [5] L. A. Caffarelli and Y. Yuan, A priori estimates for solutions of fully nonlinear equations with convex level set , Indiana Univ. Math. J. 49 (2000), 681–695. · Zbl 0965.35045 [6] M. G. Crandall, M. Kocan, P. L. Lions, and A. Swiech, Existence results for boundary problems for uniformly elliptic and parabolic fully nonlinear equations , Electron. J. Differential Equations 24 (1999), 1–20. · Zbl 0927.35029 [7] L. Escauriaza, \(W^{2,n}\) a priori estimates for solutions to fully nonlinear elliptic equations , Indiana Univ. Math. J. 42 (1993), 413–423. · Zbl 0792.35020 [8] L. C. Evans, Classical solutions of fully nonlinear, convex, second-order elliptic equations , Comm. Pure Appl. Math. 35 (1982), 333–363. · Zbl 0469.35022 [9] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems , Ann. of Math. Stud. 105 , Princeton Univ. Press, Princeton, 1983. · Zbl 0516.49003 [10] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order , 2d ed., Grundlehren Math. Wiss. 224 , Springer, Berlin, 1983. · Zbl 0562.35001 [11] Q. Huang, Estimates on the generalized Morrey spaces \(L_\phi^{2,\lambda}\) and \(\BMO_\psi\) for linear elliptic systems , Indiana Univ. Math. J. 45 (1996), 397–439. · Zbl 0863.35023 [12] –. –. –. –., On the regularity of solutions to fully nonlinear elliptic equations via the Liouville property , Proc. Amer. Math. Soc. 130 (2002), 1955–1959. \CMP1 896 027 JSTOR: · Zbl 1011.35047 [13] F. John, “Quasi-isometric mappings” in Seminari 1962/63 di Analisi Algebra, Geometria e Topologia, Vol. II , Ist. Naz. Alta Mat., Ediz. Cremonese, Rome, 1965, 462–473. [14] J. Kovats, Fully nonlinear elliptic equations and the Dini condition , Comm. Partial Differential Equations 22 (1997), 1911–1927. · Zbl 0899.35036 [15] N. V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), 487–523. · Zbl 0511.35002 [16] –. –. –. –., Boundedly inhomogeneous elliptic and parabolic equations in a domain (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), 75–108. [17] G. M. Lieberman, Regularity of solutions of obstacle problems for elliptic equations with oblique boundary conditions , Pacific J. Math. 201 (2001), 389–419. · Zbl 0516.49003 [18] J. Peetre, On convolution operators leaving \(L^{p,\lambda}\) spaces invariant , Ann. Mat. Pura Appl. (4) 72 (1966), 295–304. · Zbl 0149.09102 [19] M. V. Safonov, The classical solution of the elliptic Bellman equation , Soviet Math. Dokl. 30 (1984), 482–485. · Zbl 0595.35011 [20] –. –. –. –., Classical solution of second-order nonlinear elliptic equations , Math. USSR-Izv. 33 (1989), 597–612. · Zbl 0682.35048 [21] S. Spanne, Some function spaces defined using the mean oscillation over cubes , Ann. Scuola Norm. Sup. Pisa (3) 19 (1965), 593–608. · Zbl 0199.44303 [22] J.-O. Strömberg, Bounded mean oscillation with Orlicz norms and duality of Hardy spaces , Indiana Univ. Math. J. 28 (1979), 511–544. · Zbl 0429.46016 [23] N. S. Trudinger, Hölder gradient estimates for fully nonlinear elliptic equations , Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), 57–65. · Zbl 0653.35026 [24] Y. Yuan, A priori estimates for solutions of fully nonlinear special Lagrangian equations , Ann. Inst. Poincaré Anal. Non Linéaire 18 (2001), 261–270. · Zbl 0988.35058 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.