Koch, H.; Tzvetkov, N. On the local well-posedness of the Benjamin-Ono equation in \(H^S(\mathbb{R})\). (English) Zbl 1039.35106 Int. Math. Res. Not. 2003, No. 26, 1449-1464 (2003). The authors prove the following theorem for the Benjamin-Ono equation \[ u_{t}+\mathbf{H}u_{xx}+uu_{x}=0,\;\;u(0,x)=u_{0}(x),\tag{8} \] where \(\mathbf{H}\) denotes the Hilbert transform.Fix \(s>\frac{5}{4}\). Then for every \(u_{0}\in{\mathbf{H}^{s}(\mathbb{R})}\), there exist \(T\geq{| | u_{0}| | _{\mathbf{H}^{s}}^{-4}}\) and a unique solution of (8) on the time interval \([0,T]\) satisfying \[ u\in{C([0,T],L^{2}(\mathbb{R}))},\;\;u_{x}\in{L^{1}}{([0,T],L^{\infty}(\mathbb{R}))}. \] Moreover, for any \(R>0,\) there exists \(T\geq{R^{-4}}\) such that the nonlinear map \(u_{0}\to{u}\) is continuous from the ball of radius \(R\) of \(\mathbf{H}^{s}(\mathbb{R})\) to \(C([0,T],\mathbf{H}^{s}(\mathbb{R}))\).Conditions for an improvement of the theorem are given. Reviewer: Thomas Ernst (Uppsala) Cited in 96 Documents MSC: 35Q53 KdV equations (Korteweg-de Vries equations) 76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids 42B25 Maximal functions, Littlewood-Paley theory Keywords:well-posedness; Hilbert transform; Littlewood-Paley theory; Strichartz inequalities; Sobolev space PDF BibTeX XML Cite \textit{H. Koch} and \textit{N. Tzvetkov}, Int. Math. Res. Not. 2003, No. 26, 1449--1464 (2003; Zbl 1039.35106) Full Text: DOI