×

The point of view of the particle on the law of large numbers for random walks in a mixing random environment. (English) Zbl 1039.60089

Summary: The point of view of the particle is an approach that has proven very powerful in the study of many models of random motions in random media. We provide a new use of this approach to prove the law of large numbers in the case of one or higher-dimensional, finite range, transient random walks in mixing random environments. One of the advantages of this method over what has been used so far is that it is not restricted to i.i.d. environments.

MSC:

60K40 Other physical applications of random processes
82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses)
60K37 Processes in random environments
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] ALILI, S. (1999). Asy mptotic behaviour for random walks in random environments. J. Appl. Probab. 36 334-349. · Zbl 0946.60046
[2] BOLTHAUSEN, E. and SZNITMAN, A.-S. (2003). On the static and dy namic points of view for certain random walks in random environment. Methods Appl. Anal. 8. · Zbl 1079.60079
[3] COMETS, F. and ZEITOUNI, O. (2002). A law of large numbers for random walks in random mixing environments. Preprint. Available at www.arXiv.org. · Zbl 1078.60089
[4] DE MASI, A., FERRARI, P. A., GOLDSTEIN, S. and WICK, W. D. (1989). An invariance principle for reversible Markov processes with applications to random motions in random environments. J. Statist. Phy s. 55 787-855. · Zbl 0713.60041
[5] DOBRUSHIN, R. L. and SHLOSMAN, S. B. (1985). Constructive criterion for the uniqueness of a Gibbs field. In Statistical physics and Dy namical Sy stems (J. Fritz, A. Jaffe and D. Szasz, eds.) 347-370. Birkhäuser, Boston. · Zbl 0569.46042
[6] DOBRUSHIN, R. L. and SHLOSMAN, S. B. (1985). Completely analytical Gibbs fields. In Statistical physics and Dy namical Sy stems (J. Fritz, A. Jaffe and D. Szasz, eds.) 371- 403. Birkhäuser, Boston. · Zbl 0569.46043
[7] GEORGII, H. O. (1988). Gibbs Measures and Phase Transitions. de Gruy ter, Berlin. · Zbl 0657.60122
[8] KALIKOW, S. A. (1981). Generalized random walk in a random environment. Ann. Probab. 9 753-768. · Zbl 0545.60065
[9] KIPNIS, C. and VARADHAN, S. R. S. (1986). A central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusion. Comm. Math. Phy s. 104 1-19. · Zbl 0588.60058
[10] KOMOROWSKI, T. and KRUPA, G. (2003). The law of large numbers for ballistic, multidimensional random walks on random lattices with correlated sites. Ann. Inst. H. Poincaré Probab. Statist. · Zbl 1017.60105
[11] KOZLOV, S. M. (1985). The averaging method and walks in inhomogeneous environments. Russian Math. Survey s 40 73-145. · Zbl 0615.60063
[12] LAWLER, G. F. (1982). Weak convergence of a random walk in a random environment. Comm. Math. Phy s. 87 81-87. · Zbl 0502.60056
[13] OLLA, S. (1994). Lectures on Homogenization of Diffusion Processes in Random Fields. Ecole Poly technique, Palaiseau.
[14] PAPANICOLAOU, G. and VARADHAN, S. R. S. (1981). Boundary value problems with rapidly oscillating random coefficients. In Random Fields 835-873. North-Holland, Amsterdam. · Zbl 0499.60059
[15] SOLOMON, F. (1975). Random walks in a random environment. Ann. Probab. 3 1-31. · Zbl 0305.60029
[16] SZNITMAN, A.-S. (2000). Lectures on random motions in random media. Preprint. Available at www.math.ethz.ch/ sznitman/lectures.ps. URL:
[17] SZNITMAN, A.-S. (2002). An effective criterion for ballistic behavior of random walks in random environment. Probab. Theory Related Fields 122 509-544. · Zbl 0995.60097
[18] SZNITMAN, A.-S. and ZERNER, M. (1999). A law of large numbers for random walks in random environment. Ann. Probab. 27 1851-1869. · Zbl 0965.60100
[19] ZEITOUNI, O. (2001). Saint Flour lecture notes on random walks in random environments. Preprint. Available at www-ee.technion.ac.il/ zeitouni.
[20] ZERNER, M. and MERKL, F. (2001). A zero-one law for planar random walks in random environment. Ann. Probab. 29 1716-1732. · Zbl 1016.60093
[21] COLUMBUS, OHIO 43210-1174 E-MAIL: firas@math.ohio-state.edu URL: www.math.ny u.edu/ rassoul URL:
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.