×

zbMATH — the first resource for mathematics

Adaptive Bayesian inference on the mean of an infinite-dimensional normal distribution. (English) Zbl 1039.62039
Summary: We consider the problem of estimating the mean of an infinite-dimensional normal distribution from the Bayesian perspective. Under the assumption that the unknown true mean satisfies a “smoothness condition”, we first derive the convergence rate of the posterior distribution for a prior that is the infinite product of certain normal distributions and compare with the minimax rate of convergence for point estimators. Although the posterior distribution can achieve the optimal rate of convergence, the required prior depends on a “smoothness parameter” \(q\). When this parameter \(q\) is unknown, besides the estimation of the mean, we encounter the problem of selecting a model.
In a Bayesian approach, this uncertainty in the model selection can be handled simply by further putting a prior on the index of the model. We show that if \(q\) takes values only in a discrete set, the resulting hierarchical prior leads to the same convergence rate of the posterior as if we had a single model. A slightly weaker result is presented when \(q\) is unrestricted. An adaptive point estimator based on the posterior distribution is also constructed.

MSC:
62G20 Asymptotic properties of nonparametric inference
62C10 Bayesian problems; characterization of Bayes procedures
62G05 Nonparametric estimation
62F15 Bayesian inference
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] BIRMAN, M. S. and SOLOMJAK, M. Z. (1967). Piecewise-poly nomial approximation of functions of the class W p. Soviet Math. Sb. 73 295-317.
[2] BROWN, L. D. and LOW, M. G. (1996). Asy mptotic equivalence of nonparametric regression and white noise. Ann. Statist. 24 2384-2398. · Zbl 0867.62022
[3] BROWN, L. D., LOW, M. G. and ZHAO, L. H. (1997). Superefficiency in nonparametric function estimation. Ann. Statist. 25 2607-2625. · Zbl 0895.62043
[4] COX, D. D. (1993). An analysis of Bayesian inference for nonparametric regression. Ann. Statist. 21 903-923. · Zbl 0778.62003
[5] DIACONIS, P. and FREEDMAN, D. (1997). On the Bernstein-von Mises theorem with infinite dimensional parameters. Technical Report 492, Dept. Statistics, Univ. California.
[6] EFROMOVICH, S. Y. and PINSKER, M. S. (1984). Learning algorithm for nonparametric filtering. Autom. Remote Control 45 1434-1440. · Zbl 0637.93069
[7] FREEDMAN, D. (1999). On the Bernstein-von Mises theorem with infinite dimensional parameters. Ann. Statist. 27 1119-1140. · Zbl 0957.62002
[8] GHOSAL, S., GHOSH, J. K. and VAN DER VAART, A. W. (2000). Convergence rates of posterior distributions. Ann. Statist. 28 500-531. · Zbl 1105.62315
[9] GHOSAL, S., LEMBER, J. and VAN DER VAART, A. W. (2002). On Bayesian adaptation. In Proceedings of 8th Vilnius Conference on Probability and Statistics. · Zbl 1030.62030
[10] HUANG, T. M. (2000). Convergence rates for posterior distributions and adaptive estimation. · Zbl 1095.62055
[11] KLEMELĂ„, J. and NUSSBAUM, M. (1998). Constructive asy mptotic equivalence of density estimation and Gaussian white noise. Technical Report 53, Humboldt Univ., Berlin.
[12] NUSSBAUM, M. (1996). Asy mptotic equivalence of density estimation and Gaussian white noise. Ann. Statist. 24 2399-2430. · Zbl 0867.62035
[13] PINSKER, M. S. (1980). Optimal filtration of square-integrable signals in Gaussian white noise. Problems Inform. Transmission 16 120-133. · Zbl 0452.94003
[14] SHEN, X. and WASSERMAN, L. (2001). Rates of convergence of posterior distributions. Ann. Statist. 29 687-714. · Zbl 1041.62022
[15] VAN DER VAART, A. W. (2000). Private communication.
[16] WILLIAMS, D. (1991). Probability with Martingales. Cambridge Univ. Press. · Zbl 0722.60001
[17] ZHAO, L. H. (2000). Bayesian aspects of some nonparametric problems. Ann. Statist. 28 532-552. · Zbl 1010.62025
[18] RALEIGH, NORTH CAROLINA 27695-8203 E-MAIL: ghosal@stat.ncsu.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.