zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The homotopy perturbation method for nonlinear oscillators with discontinuities. (English) Zbl 1039.65052
Summary: The homotopy perturbation method is applied to the nonlinear oscillators with discontinuities. Only one iteration leads to high accuracy of the solutions.

MSC:
65L05Initial value problems for ODE (numerical methods)
34A34Nonlinear ODE and systems, general
WorldCat.org
Full Text: DOI
References:
[1] Bender, C. M.; Pinsky, K. S.; Simmons, L. M.: A new perturbative approach to nonlinear problems. Journal of mathematical physics 30, No. 7, 1447-1455 (1989) · Zbl 0684.34008
[2] Andrianov, I.; Awrejcewicz, J.: Construction of periodic solution to partial differential equations with nonlinear boundary conditions. International journal of nonlinear sciences and numerical simulation 1, No. 4 (2000) · Zbl 0977.35031
[3] He, J. H.: A note on delta-perturbation expansion method. Applied mathematics and mechanics 23, No. 6, 634-638 (2002) · Zbl 1029.34043
[4] Liao, S. J.: Homotopy analysis method: a new analytic method for nonlinear problems. Applied mathematics and mechanics (English-ed.) 19, No. 10, 957-962 (1998) · Zbl 1126.34311
[5] J.H. He, Comparison of Homotopy Perturbation Method and Homotopy Analysis Method, International Congress of Mathematicians, Beijing, 20--28 August, 2002
[6] He, J. H.: Variational iteration method: a kind of nonlinear analytical technique: some examples. International journal of nonlinear mechanics 34, No. 4, 699-708 (1999) · Zbl 05137891
[7] He, J. H.: Bookkeeping parameter in perturbation methods. International journal of non-linear sciences and numerical simulation 2, No. 3, 257-264 (2001) · Zbl 1072.34508
[8] He, J. H.: A review on some new recently developed nonlinear analytical techniques. International journal of nonlinear sciences and numerical simulation 1, No. 1, 51-70 (2000) · Zbl 0966.65056
[9] Nayfeh, A. H.: Introduction to perturbation techniques. (1981) · Zbl 0449.34001
[10] He, J. -H.: An approximate solution technique depending upon an artificial parameter. Communications in nonlinear science and numerical simulation 3, No. 2, 92-97 (1998)
[11] He, J. H.: Homotopy perturbation technique. Computer methods in applied mechanics and engineering 178, No. 3/4, 257-262 (1999) · Zbl 0956.70017
[12] He, J. H.: A coupling method of homotopy technique and perturbation technique for nonlinear problems. International journal of non-linear mechanics 35, No. 1, 37-43 (2000) · Zbl 1068.74618
[13] He, J. H.: Gongcheng yu kexue zhong de jinshi feixianxing feixi fangfa (in chinese), asymptotic methods in engineering and sciences. (2002)
[14] He, J. H.: A modified perturbation technique depending upon an artificial parameter. Meccanica 35, 299-311 (2000) · Zbl 0986.70016
[15] He, J. H.: Modified Lindstedt--Poincarè methods for some strongly nonlinear oscillations. Part I: Expansion of a constant. International journal of non-linear mechanics 37, No. 2, 309-314 (2002) · Zbl 1116.34320
[16] He, J. H.: Modified Lindstedt--Poincarè methods for some strongly nonlinear oscillations. Part II: a new transformation. International journal of non-linear mechanics 37, No. 2, 315-320 (2002) · Zbl 1116.34321
[17] He, J. H.: Modified Lindstedt--Poincarè methods for some strongly nonlinear oscillations. Part III: Double series expansion. International journal of non-linear sciences and numerical simulation 2, No. 4, 317-320 (2001) · Zbl 1072.34507
[18] Acton, J. R.; Squire, P. T.: Solving equations with physical understanding. (1985)