Spectra of weakly associative lattice rings. (English) Zbl 1040.06007

Summary: Weakly associative lattice rings (\(wal\)-rings) are nontransitive generalizations of lattice-ordered rings (\(l\)-rings) in which the identities of associativity of the lattice operations join and meet are replaced by the identities of weak associativity. The spectral topologies on the sets of straightening ideals of weakly associative lattice rings are introduced and studied.


06F25 Ordered rings, algebras, modules
Full Text: EuDML


[1] Bigard A., Keimel K., Wolfenstein S.: Groupes et anneaux réticulés. Springer Verlag, Berlin-Heidelberg-New York, 1977. · Zbl 0384.06022
[2] Fried E.: Tournaments and non-associative lattices. Ann. Univ. Sci. Budapest, Sect. Math. 13 (1970), 151-164. · Zbl 0224.06004
[3] Kopytov V. M., Medvedev N. Ya.: The Theory of Lattice Ordered Groups. Kluwer Acad. Publ., Dordrecht, 1994. · Zbl 0834.06015
[4] Rachůnek J.: Structure spaces of lattice ordered groups. Czechoslovak Math. J. 39, 114 (1989), 686-691. · Zbl 0703.06010
[5] Rachůnek J.: Solid subgroups of weakly associative lattice groups. Acta Univ. Palacki. Olomuc., Fac. rer. nat. 105, Math. 31 (1992), 13-24. · Zbl 0776.06016
[6] Rachůnek J.: On some varieties of weakly associative lattice groups. Czechoslovak Math. J. 46, 121 (1996), 231-240. · Zbl 0870.06016
[7] Rachůnek J.: Spectra of autometrized lattice algebras. Mathematica Bohemica 123, 1 (1998), 87-94. · Zbl 0897.06017
[8] Rachůnek J.: Spectra of abelian weakly associative lattice groups. Discussiones Math., General Algebra and Applications 20 (2000), 51-61. · Zbl 0963.06016
[9] Rachůnek J., Šalounová D.: Non-transitive generalizations of subdirect products of linearly ordered rings. Submitted. · Zbl 1080.06032
[10] Šalounová D.: Weakly associative lattice rings. Acta Math. et Inf. Univ. Ostraviensis 8 (2000), 75-87. · Zbl 1021.06012
[11] Skala H.: Trellis theory. Alg. Univ. 1 (1971), 218-233. · Zbl 0242.06003
[12] Skala H.: Trellis Theory. Memoirs AMS, Providence, 1972. · Zbl 0242.06004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.