Some remarks on invertible substitutions on three letter alphabet. (English) Zbl 1040.20504

Summary: By introducing the notion of “prime substitution” it is shown that the set of invertible substitutions over an alphabet of more than three letters is not finitely generated. Some examples are given.


20M05 Free semigroups, generators and relations, word problems
Full Text: DOI


[1] Wen, Z.-X.; Wen, Z. -Y., Sequences of substitutions and related topics, Adv. in Math, 18, 3, 123-123 (1989)
[2] Allouche, J. -P.; Peyrière, J., Sur une formule de récurrence sur les traces de produits de matrices associés à certaines substitutions, C. R. Acad. Sci. Paris, 302, II, 1135-1135 (1986) · Zbl 0587.65033
[3] Axel, F.; Gratias, D., Beyond Quasicrystals (1995), Berlin Heiderberg: Springer-Verlag, Berlin Heiderberg
[4] Bombieri, E.; Taylor, J., Quasicrystals, tilings, and algebraic number theory: some preliminary connections, Contemporary Mathematics, 64, 241-241 (1987) · Zbl 0617.43002
[5] Luck, J. M.; Godrèche, C.; Janner, A., The nature of the atomic surfaces of quasiperiodic self-similar structures, J. Phys. A: Math. Gen., 26, 1951-1951 (1993) · Zbl 0785.11057
[6] Queffélec, M., Substitution dynamical system-spectral analysis, Lecture Notes in Mathematics (1987), New York: Springer-Verlag, New York · Zbl 0642.28013
[7] Riklund, R.; Severin, M.; Liu, Y., Thue-Morse aperiodic crystal, a link between the Fibonacci quasicrstal and the periodic crystal, Int. J. Mod. Phys., B1, 121-121 (1987) · Zbl 1165.82326
[8] Süto, A., Singular continues spectum on a Cantor set of zero Lebesgue measure for the Fibonacci hamiltonian, J. Stat. Phys., 56, 527-527 (1989)
[9] Wen, Z. -Y.; Wijnands, F.; Lamb, J., A nature class of generalized Fibonacci chains, J. Phys. A: Math. Gen., 27, 3689-3689 (1994) · Zbl 0871.11018
[10] Wen, Z. -Y.; Janssen, T.; Dekking, F. M., Fibonacci chain as a periodic chain with discommensuration, J. Phys. A: Math. Gen., 27, 1-1 (1994)
[11] Peyrière, J.; Wen, Z.-X.; Wen, Z.-Y., Polynomês associées aux endomorphismes de groupes libres, L’ Enseig. Math. t., 39, 153-153 (1993) · Zbl 0798.20017
[12] Nielsen, J., Die Isomorphismen der allgemeinen unendlichen Gruppe mit zwei Erzengenden, Math., Ann., 78, 385-385 (1918) · JFM 46.0175.01
[13] Nielsen, J., Die Isomorphismen der freien Gruppen, Math. Ann., 91, 169-169 (1924) · JFM 50.0078.04
[14] Wen, Z.-X.; Wen, Z.-Y., Local isomorphism of the invertible substitutions, C. R. Acad. Sci. Paris, 318, I, 299-299 (1994) · Zbl 0812.11018
[15] Mignosi, F.; Séébold, P., Morphisms sturmians et règles de Rauzy, Journal de Théorie des Nombres de Bordeaux, 5, 221-221 (1993) · Zbl 0797.11029
[16] Wen Zhi-Xiong, Wen Zhi-Ying, Some studies of factors of infinite words generated by invertible substitution, Formal power series and algebraic combinatorics, inProc. of 5th Conf. (eds. Barlotti, A., Delest, M., Pinzani, R.), 1993, 455-466.
[17] Peyrière, J.; Wen, Z. -X.; Wen, Z. -Y.; Xiao, S.; Hu, X., On the dynamic behaviours of the iterations of the trace map associated with substitutive sequences, Nonlinear Problems in Engineering and Science, 259-266 (1992), Beijing: Science Press, Beijing
[18] Wen Zhi-Xiong, Wen Zhi-Ying, A characterization of invertible trace maps with a substution,CIRM, Publications du Centre International de Rencontres Mathématiques, 1995 (11): 307.
[19] Wen, Z. -X.; Wen, Z. -Y., Structure of a class of polynomial maps with invariant factors, Osaka J. Math., 4, 188-188 (1997)
[20] Magnus, W., Karrass, A., Solitar, D.,Combinatorial Group Theory:Presentations of Groups in Terms of Generators and Relations, 2nd ed., Dover Publications, Inc., 1976. · Zbl 0362.20023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.