Guo, Bai-Ni; Qiao, Bao-Min; Qi, Feng; Li, Wei On new proofs of Wilker’s inequalities involving trigonometric functions. (English) Zbl 1040.26006 Math. Inequal. Appl. 6, No. 1, 19-22 (2003). By using some properties of Bernoulli’s numbers and techniques of calculus, the best possible constants \(\alpha=\frac8{45}\) and \(\beta=\left(\frac2\pi\right)^4\) in the inequality \[ 2+\alpha x^3\tan x>\left(\frac{\sin x}x\right)^2+\frac{\tan x}x>2+\beta x^3\tan x \] are confirmed. Reviewer: Feng Qi (Henan) Cited in 23 Documents MSC: 26D05 Inequalities for trigonometric functions and polynomials 11B68 Bernoulli and Euler numbers and polynomials 33B10 Exponential and trigonometric functions 42A05 Trigonometric polynomials, inequalities, extremal problems Keywords:inequality; sine function; tangent function; Bernoulli number; Wilker’s inequality PDF BibTeX XML Cite \textit{B.-N. Guo} et al., Math. Inequal. Appl. 6, No. 1, 19--22 (2003; Zbl 1040.26006) Full Text: DOI