# zbMATH — the first resource for mathematics

Certain subclasses of analytic functions associated with the generalized hypergeometric function. (English) Zbl 1040.30003
For two holomorphic functions in the unit disk $$| z| < 1,$$ $$f(z)=z+\sum_{n=2}^{\infty}a_n z^n$$ and $$g(z)=z+\sum_{n=2}^{\infty}b_n z^n$$ the Hadamard product (or convolution ) is defined as $$(f \star g)(z)=z+\sum_{n=2}^{\infty}a_n b_n z^n.$$ Let $$_qF_s(\alpha_1,\ldots\,\alpha_q; \beta_1,\ldots,\beta_s;z)$$ denote the generalized hypergeometric function with $$q \leq s+1$$, $$q,s=0, 1, 2,\ldots$$, $$\alpha_j \in \mathbb{C}$$, $$\beta_j \in \mathbb{C}\setminus \{0, -1, -2\ldots\}$$. Very special subclasses of holomorphic functions $$f(z)=a_1 z-\sum_{n=2}^{\infty}a_n z^n$$, $$a_n \geq 0$$, $$n\geq2$$, $$| z| <1$$ defined by convolution of $$f$$ with $$z_qF_s$$ and subordinate to $$\frac{1+Az}{1+Bz}$$, $$0 \leq B \leq 1$$, $$-B \leq A \leq B$$ are studied.
(They satisfy moreover the condition $$f(\rho)=\rho$$ or $$f'(\rho)=1$$, $$0<\rho<1$$.) The necessary and sufficient conditions in the terms of coefficients for $$f$$ to be in the class under consideration are determined. Some distortion theorems and the radii of convexity and starlikeness are found.

##### MSC:
 30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.) 33C20 Generalized hypergeometric series, $${}_pF_q$$
Full Text:
##### References:
  DOI: 10.1090/S0002-9939-1966-0188423-X  Montel P., Leeons sur les Fonctions Univalentes ou Multivalentes (1933) · JFM 59.0346.14  Owa S., I. Kyungpook Math. J. 18 pp 53– (1978)  DOI: 10.4153/CJM-1987-054-3 · Zbl 0611.33007  DOI: 10.1090/S0002-9939-1975-0367176-1  Srivastava H. M., Comment. Math. Univ. St. Paul. 35 pp 175– (1986)  Srivastava H. M., Nagoya Math. J. 106 pp 1– (1987) · Zbl 0607.30014  Srivastava H. M., Univalent Functions, Fractional Calculus, and Their Applications (1989) · Zbl 0683.00012  Srivastava H. M, Current Topics in Analytic Function Theory (1992) · Zbl 0976.00007  DOI: 10.1016/0022-247X(92)90373-L · Zbl 0760.30006  DOI: 10.1006/jmaa.1995.1197 · Zbl 0831.30008  DOI: 10.1090/S0002-9947-1969-0232920-2  DOI: 10.1137/0515057 · Zbl 0567.30009  DOI: 10.1016/S0096-3003(98)10042-5 · Zbl 0937.30010  Hohlov Yu. E., Izv. Vys?. Ucebn. Zaved. Matematika 10 pp 83– (1978)  DOI: 10.1090/S0002-9939-1965-0178131-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.