×

Domains with non-compact automorphism group: a survey. (English) Zbl 1040.32019

Summary: We survey results arising from the study of domains in \(\mathbb C^n\) with non-compact automorphism group. Beginning with a well-known characterization of the unit ball, we develop ideas toward a consideration of weakly pseudoconvex (and even non-pseudoconvex) domains with particular emphasis on characterizations of (i) smoothly bounded domains with non-compact automorphism group and (ii) the Levi geometry of boundary orbit accumulation points. Particular attention will be paid to results derived in the past ten years.

MSC:

32M05 Complex Lie groups, group actions on complex spaces
32T15 Strongly pseudoconvex domains
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bedford, E.; Dadok, J., Bounded domains with prescribed group of automorphisms, Comment Math. Helv., 62, 561-572 (1987) · Zbl 0647.32027
[2] Bedford, E.; Pinchuk, S., Domains in \(C^2\) with non-compact holomorphic automorphism group, Math. USSR-Sb., 63, 141-151 (1989) · Zbl 0668.32029
[3] Bedford, E.; Pinchuk, S., Domains in \(C^{n+1}\) with non-compact automorphism groups, J. Geom. Anal., 1, 165-191 (1991) · Zbl 0733.32014
[4] Bedford, E.; Pinchuk, S., Convex domains with non-compact automorphism group, Russian Acad. Sci. Sb. Math., 82, 1-20 (1995) · Zbl 0847.32023
[5] Bedford, E.; Pinchuk, S., Domains in \(C^2\) with non-compact automorphism group, Indiana Univ. Math. J., 47, 149-222 (1999)
[6] Bell, S., Biholomorphic mappings and the ∂ problem, Ann. of Math., 114, 103-113 (1981) · Zbl 0423.32009
[7] Bell, S., Compactness of families of holomorphic mappings up to the boundary, Complex Analysis. Complex Analysis, Lecture Notes in Mathematics, 1268 (1987), Springer-Verlag: Springer-Verlag New York/Berlin, p. 29-42 · Zbl 0633.32020
[8] Bell, S., Weakly pseudoconvex domains with non-compact automorphism groups, Math. Ann., 280, 403-408 (1988) · Zbl 0617.32030
[9] S. Bell, and, D. Catlin, personal communication.; S. Bell, and, D. Catlin, personal communication.
[10] Berteloot, F.; Cœuré, G., Domaines de \(C^2\), pseudoconvex et de type fini ayant un groupe non compact d’automorphismes, Ann. Inst. Fourier (Grenoble), 41, 77-88 (1991) · Zbl 0711.32016
[11] Berteloot, F., Sur certains domaines faiblement pseudoconvexes dont le groupe d’automorphismes analytiques est non compact, Bull. Sci. Math. (2), 114, 411-420 (1990) · Zbl 0717.32018
[12] Berteloot, F., Un principe de localisation pour les domaines faiblement pseudoconvexes de \(C^2\) dont le groupe d’automorphismes holomorphes est non compact, Asterisque, 217, 13-27 (1993) · Zbl 0794.32018
[13] Berteloot, F., Characterization of models in \(C^2\) by their automorphism groups, Internat. J. Math., 5, 619-634 (1994) · Zbl 0817.32010
[14] Bland, J.; Duchamp, T.; Kalka, M., A characterization of \(CP^n\) by its automorphism group, Complex Analysis. Complex Analysis, Lecture Notes in Mathematics, 1268 (1987), Springer-Verlag: Springer-Verlag New York/Berlin, p. 60-65 · Zbl 0621.32030
[15] Braun, R.; Kaup, W.; Upmeier, H., On the automorphisms of circular and Reinhardt domains in complex Banach spaces, Manuscripta Math., 25, 97-133 (1978) · Zbl 0398.32001
[16] Burns, D.; Shnider, S.; Wells, R. O., Deformations of strictly pseudoconvex domains, Invent. Math., 46, 237-253 (1978) · Zbl 0412.32022
[17] Cartan, É., Sur les domaines bornés, homogènes de l’espace de \(n\) variables complexes, Abh. Math. Sem. Univ. Hamburg, 11, 116-162 (1936) · JFM 61.0370.03
[18] Catlin, D., Boundary invariants of pseudoconvex domains, Ann. of Math., 120, 529-586 (1984) · Zbl 0583.32048
[19] Chern, S. S.; Moser, J., Real hypersurfaces in complex manifolds, Acta Math., 133, 219-271 (1974) · Zbl 0302.32015
[20] Coupet, B.; Sukhov, A., On the boundary rigidity phenomenon for automorphisms of domains in \(C^n\), Proc. Amer. Math. Soc., 124, 3371-3380 (1996) · Zbl 0868.32018
[21] D’Angelo, J., Real hypersurfaces, orders of contact, and applications, Ann. of Math., 115, 615-637 (1982) · Zbl 0488.32008
[22] D’Angelo, J., Several Complex Variables and the Geometry of Real Hypersurfaces (1993), CRC Press: CRC Press Boca Raton · Zbl 0854.32001
[23] Diederich, K.; Fornaess, J. E., Pseudoconvex domains with real analytic boundary, Ann. of Math., 107, 371-384 (1978) · Zbl 0378.32014
[24] Efimov, A., Extension of the Wong-Rosay theorem to the unbounded case, Sb. Mat., 186, 967-976 (1995) · Zbl 0865.32020
[25] Fefferman, C., The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math., 26, 1-65 (1974) · Zbl 0289.32012
[26] Frankel, S., Complex geometry of convex domains that cover varieties, Acta Math., 163, 109-149 (1989) · Zbl 0697.32016
[27] Fu, S.; Isaev, A. V.; Krantz, S. G., Examples of domains with non-compact automorphism groups, Math. Res. Lett., 3, 609-617 (1996) · Zbl 0881.32001
[28] Fu, S.; Isaev, A. V.; Krantz, S. G., Reinhardt domains with non-compact automorphism groups, Math. Res. Lett., 3, 109-122 (1996) · Zbl 0866.32001
[29] Fu, S.; Wong, B., On boundary accumulation points of a smoothly bounded pseudoconvex domain in \(C^2\), Math. Ann., 310, 183-196 (1998) · Zbl 0955.32011
[30] S. Fu, and, B. Wong, On a domain in \(C^2\); S. Fu, and, B. Wong, On a domain in \(C^2\) · Zbl 1026.32047
[31] Gaussier, H., Characterization of convex domains with non-compact automorphism group, Michigan Math. J., 44, 375-388 (1997) · Zbl 0889.32032
[32] Graham, I., Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in \(C^n\) with smooth boundary, Trans. Amer. Math. Soc., 207, 219-240 (1975) · Zbl 0305.32011
[33] Greene, R. E.; Krantz, S. G., Deformation of complex structures, estimates for the ∂ equation, and stability of the Bergman kernel, Adv. Math., 43, 1-86 (1982) · Zbl 0504.32016
[34] Greene, R. E.; Krantz, S. G., Stability of the Carathéodory and Kobayashi metrics and applications to biholomorphic mappings, Complex Analysis of Several Complex Variables. Complex Analysis of Several Complex Variables, Proc. Sympos. Pure Math., 41 (1984), Amer. Math. Soc: Amer. Math. Soc Providence, p. 77-93 · Zbl 0533.32011
[35] Greene, R. E.; Krantz, S. G., Characterization of complex manifolds by the isotropy subgroups of their automorphism groups, Indiana Univ. Math. J., 34, 865-879 (1985) · Zbl 0622.32020
[36] Greene, R. E.; Krantz, S. G., Characterization of certain weakly pseudoconvex domains with non-compact automorphism groups, Complex Analysis. Complex Analysis, Lecture Notes in Mathematics, 1268 (1987), Springer-Verlag: Springer-Verlag New York/Berlin, p. 121-157 · Zbl 0626.32023
[37] Greene, R. E.; Krantz, S. G., Biholomorphic self-maps of domains, Complex Analysis II. Complex Analysis II, Lecture Notes in Mathematics, 1276 (1987), Springer-Verlag: Springer-Verlag New York/Berlin, p. 136-207 · Zbl 0625.32024
[38] Greene, R. E.; Krantz, S. G., Invariants of Bergman geometry and the automorphism groups of domains in \(C^n\), Geometrical and Algebraical Aspects in Several Complex Variables. Geometrical and Algebraical Aspects in Several Complex Variables, Sem. Conf. 8 (1991), EditEl: EditEl Rende, p. 107-136 · Zbl 0997.32012
[39] Greene, R. E.; Krantz, S. G., Techniques for studying automorphisms of weakly pseudoconvex domains, Several Complex Variables. Several Complex Variables, Math. Notes, 38 (1993), Princeton Univ. Press: Princeton Univ. Press Princeton, p. 389-410 · Zbl 0779.32017
[40] Huang, X., Some applications of Bell’s theorem to weakly pseudoconvex domains, Pacific J. Math., 158, 305-315 (1993) · Zbl 0807.32016
[41] Huckleberry, A.; Oeljeklaus, K., Classification theorems for almost homogeneous spaces, Institut Élie Cartan (1984), Université de NancyInstitut Élie Cartan: Université de NancyInstitut Élie Cartan Nancy · Zbl 0549.32024
[42] Isaev, A. V.; Krantz, S. G., On the boundary orbit accumulation set for a domain with non-compact automorphism group, Michigan Math. J., 43, 611-617 (1996) · Zbl 0879.32016
[43] Isaev, A. V.; Krantz, S. G., Finitely smooth Reinhardt domains with non-compact automorphism group, Illinois J. Math., 41, 412-420 (1997) · Zbl 0879.32002
[44] Isaev, A. V.; Krantz, S. G., Hyperbolic Reinhardt domains with non-compact automorphism group, Pacific J. Math., 184, 149-160 (1998) · Zbl 0918.32013
[45] Kim, K.-T., Domains with non-compact automorphism groups, Recent Developments in Geometry. Recent Developments in Geometry, Contemp. Math., 101 (1989), Amer. Math. Soc: Amer. Math. Soc Providence, p. 249-262 · Zbl 0691.32010
[46] Kim, K.-T., Complete localization of domains with non-compact automorphism groups, Trans. Amer. Math. Soc., 319, 139-153 (1990) · Zbl 0705.32008
[47] Kim, K.-T., Domains in \(C^n\) with a piecewise Levi flat boundary which possess a non-compact automorphism group, Math. Ann., 292, 575-586 (1992) · Zbl 0735.32021
[48] Kim, K.-T., Geometry of bounded domains and the scaling techniques in several complex variables, Lecture Notes Series (1993), Seoul National UniversityResearch Institute of Mathematics, Global Analysis Research Center: Seoul National UniversityResearch Institute of Mathematics, Global Analysis Research Center Seoul · Zbl 0820.32014
[49] Kim, K.-T., On a boundary point repelling automorphism orbits, J. Math. Anal. Appl., 179, 463-482 (1993) · Zbl 0816.32015
[50] K.-T. Kim, Two examples for scaling methods in several complex variables, RIM-GARC preprint Series, Seoul National University, 95-53, 1995.; K.-T. Kim, Two examples for scaling methods in several complex variables, RIM-GARC preprint Series, Seoul National University, 95-53, 1995.
[51] Kim, K.-T.; Yu, J., Boundary behavior of the Bergman curvature in strictly pseudoconvex polyhedral domains, Pacific J. Math., 176, 141-163 (1996) · Zbl 0886.32020
[52] Klembeck, P., Kähler metric of negative curvature, the Bergmann metric near the boundary, and the Kobayashi metric on smooth bounded strictly pseudoconvex sets, Indiana Univ. Math. J., 27, 275-282 (1978) · Zbl 0422.53032
[53] Kobayashi, S., Hyperbolic Manifolds and Holomorphic Mappings (1970), Dekker: Dekker New York · Zbl 0207.37902
[54] Kobayashi, S., Intrinsic distances, measures and geometric function theory, Bull. Amer. Math. Soc., 82, 357-416 (1976) · Zbl 0346.32031
[55] Kodama, A., A remark on bounded Reinhardt domains, Proc. Japan Acad. Ser. A Math. Sci., 54, 179-182 (1978) · Zbl 0412.32001
[56] Kodama, A., On the structure of a bounded domain with a special boundary point, Osaka J. Math., 23, 271-298 (1986) · Zbl 0608.32012
[57] Kodama, A., On the structure of a bounded domain with a special boundary point, II, Osaka J. Math., 24, 499-519 (1987) · Zbl 0629.32027
[58] Kodama, A., Characterization of certain weakly pseudoconvex domains \(E(k, α)\) in \(C^n\), Tôhoku Math. J., 40, 343-365 (1988) · Zbl 0667.32013
[59] Kodama, A., A characterization of certain domains with good boundary points in the sense of Greene-Krantz, Kodai. Math. J., 12, 257-269 (1989) · Zbl 0693.32008
[60] Kodama, A., Characterization of certain weakly pseudoconvex domains in \(C^n\) from the viewpoint of biholomorphic automorphism groups, Several Complex Variables and Complex Geometry, Part 2. Several Complex Variables and Complex Geometry, Part 2, Proc. Sympos. Pure Math., 52 (1991), Amer. Math. Soc: Amer. Math. Soc Providence, p. 291-296 · Zbl 0739.32018
[61] Kodama, A., A characterization of certain domains with good boundary points in the sense of Greene-Krantz, II, Tôhoku Math. J., 43, 9-25 (1991) · Zbl 0736.32004
[62] Kodama, A., A characterization of certain domains with good boundary points in the sense of Greene-Krantz, III, Osaka J. Math., 32, 1055-1063 (1995) · Zbl 0857.32008
[63] Kodama, A.; Krantz, S. G.; Ma, D. W., A characterization of generalized complex ellipsoids in \(C^n\) and related results, Indiana Univ. Math. J., 41, 173-195 (1992) · Zbl 0782.32027
[64] Krantz, S. G., Characterization of smooth domains in \(C\) by their biholomorphic self-maps, Amer. Math. Monthly, 90, 555-557 (1983) · Zbl 0524.30007
[65] Krantz, S. G., Convexity in complex analysis, Several Complex Variables and Complex Geometry, Part 1. Several Complex Variables and Complex Geometry, Part 1, Proc. Sympos. Pure Math., 52 (1991), Amer. Math. Soc: Amer. Math. Soc Providence, p. 119-137 · Zbl 0739.32019
[66] Krantz, S. G., Function Theory of Several Complex Variables (1992), Wadsworth: Wadsworth Belmont · Zbl 0776.32001
[67] S. G. Krantz, Survey of some recent ideas concerning automorphism groups of domains, in, Proceedings of a Conference in Honor of Pierre Dolbeault, Hermann, Paris, 1995.; S. G. Krantz, Survey of some recent ideas concerning automorphism groups of domains, in, Proceedings of a Conference in Honor of Pierre Dolbeault, Hermann, Paris, 1995. · Zbl 0963.32012
[68] Kruzhilin, N. G., Holomorphic automorphisms of hyperbolic Reinhardt domains, Math. USSR-Izv., 32, 15-38 (1989) · Zbl 0663.32019
[69] Lempert, L., On the boundary behavior of holomorphic mappings, Contributions to Several Complex Variables. Contributions to Several Complex Variables, Aspects of Math., E9 (1986), Vieweg: Vieweg Braunschweig, p. 193-215 · Zbl 0589.32028
[70] Lempert, L.; Rubel, L., An independence result in several complex variables, Proc. Amer. Math. Soc., 113, 1055-1065 (1991) · Zbl 0737.03027
[71] Morimoto, A.; Nagano, T., On pseudo-conformal deformations of hypersurfaces, J. Math. Soc. Japan, 15, 289-300 (1963) · Zbl 0119.06701
[72] Narasimhan, R., Several Complex Variables (1971), Univ. of Chicago Press: Univ. of Chicago Press Chicago · Zbl 0223.32001
[73] Pinchuk, S., Holomorphic inequivalence of some classes of domains in \(C^n\), Math. USSR-Sb., 39, 61-86 (1981) · Zbl 0464.32014
[74] Pinchuk, S., Homogeneous domains with piecewise smooth boundaries, Math. Notes, 32, 849-852 (1983) · Zbl 0576.32041
[75] Pinchuk, S., The scaling method and holomorphic mappings, Several Complex Variables and Complex Geometry, Part 1. Several Complex Variables and Complex Geometry, Part 1, Proc. Sympos. Pure Math., 52 (1991), Amer. Math. Soc: Amer. Math. Soc Providence, p. 151-161 · Zbl 0744.32013
[76] Poincaré, H., Les fonctions analytiques de deux variables et la représentation conforme, Rend. Circ. Mat. Palermo, 23, 185-220 (1907) · JFM 38.0459.02
[77] Poletskii, E. A.; Shabat, B. V., Invariant metrics, Encycl. Math. Sci. (1989), Springer-Verlag: Springer-Verlag New York/Berlin, p. 63-111
[78] Pyatetskii-Shapiro, I., Automorphic Functions and the Geometry of Classical Domains (1969), Gordon & Breach: Gordon & Breach New York · Zbl 0196.09901
[79] Rosay, J. P., Sur une caractérisation de la boule parmi les domaines de \(C^n\) par son groupe d’automorphismes, Ann. Inst. Fourier (Grenoble), 29, 91-97 (1979) · Zbl 0402.32001
[80] Rudin, W., Function Theory in the Unit Ball of \(C^n (1980)\), Springer-Verlag: Springer-Verlag New York/Berlin · Zbl 0495.32001
[81] Saerens, R.; Zame, W., The isometry groups of manifolds and the automorphism groups of domains, Trans. Amer. Math. Soc., 301, 413-429 (1987) · Zbl 0621.32025
[82] Shimizu, S., Automorphisms of bounded Reinhardt domains, Japan J. Math., 15, 385-414 (1989) · Zbl 0712.32003
[83] Sunada, T., Holomorphic equivalence problem for bounded Reinhardt domains, Math. Ann., 235, 111-128 (1978) · Zbl 0357.32001
[84] Tumanov, A., Geometry of CR-manifolds, Encycl. Math. Sci. (1989), Springer-Verlag: Springer-Verlag New York/Berlin, p. 201-221 · Zbl 0658.32007
[85] Tumanov, A.; Shabat, G., Realization of linear Lie groups by biholomorphic automorphisms of bounded domains, Funct. Anal. Appl., 24, 255-257 (1991) · Zbl 0717.32019
[86] Wong, B., Characterization of the unit ball in \(C^n\) by its automorphism group, Invent. Math., 41, 253-257 (1977) · Zbl 0385.32016
[87] Wong, B., Characterization of the bidisc by its automorphism group, Amer. J. Math., 117, 279-288 (1995) · Zbl 0827.32022
[88] Zaitsev, D., On the automorphism group of algebraic bounded domains, Math. Ann., 302, 105-129 (1995) · Zbl 0823.14005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.