zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Modeling the interdependence of volatility and inter-transaction duration processes. (English) Zbl 1040.62094
Summary: This paper develops an approach for modeling the interdependence of intra-day volatility and trade duration processes, and extends the recursive specifications that have recently been proposed in the literature. We propose a suitable GMM estimation strategy that includes straightforward estimation of the autoregressive conditional duration model. A Monte Carlo study examines the performance of the estimation method. The empirical work investigates the impact of volatility on transaction intensity in the secondary equity market after a large initial public offering. We find that lagged volatility significantly reduces transaction intensity, which is consistent with predictions from microstructure theory.

MSC:
62P05Applications of statistics to actuarial sciences and financial mathematics
62M10Time series, auto-correlation, regression, etc. (statistics)
65C05Monte Carlo methods
WorldCat.org
Full Text: DOI
References:
[1] Admati, A.; Pfleiderer, P.: A theory of intraday patterns: volume and price variability. Review of financial studies 1, 3-40 (1988)
[2] Andersen, T. G.; Bollerslev, T.: Intraday periodicity and volatility persistence in financial markets. Journal of empirical finance 4, 115-158 (1997)
[3] Andersen, T. G.; Sørenson, B. E.: GMM estimation of a stochastic volatility model: a Monte Carlo study. Journal of business and economic statistics 14, 328-352 (1996)
[4] Andrews, D. W. K.: Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 59, 817-858 (1991) · Zbl 0732.62052
[5] Andrews, D. W. K.: A stopping rule for the computation of generalized method of moments estimators. Econometrica 65, 913-931 (1997) · Zbl 0899.62101
[6] Andrews, D. W. K.: Consistent moment selection procedures for generalized method of moments estimation. Econometrica 67, 543-564 (1999) · Zbl 1056.62505
[7] Andrews, D. W. K.; Monahan, C.: An improved heteroskedasticity and autocorrelation consistent covariance matrix estimator. Econometrica 60, 953-966 (1992) · Zbl 0778.62103
[8] Bates, C.; White, H.: Efficient instrumental variables estimation of systems of implicit heterogeneous nonlinear dynamic equations with nonspherical errors. Dynamic econometric modelling (1988) · Zbl 0727.62108
[9] Bauwens, L., Giot, P., Grammig, J., Veredas, D., 2000. A comparison of financial duration models via density forecasts. CORE Discussion Paper 0060. Université Catholique de Louvain.
[10] Campbell, J. Y.; Lo, A. W.; Mackinlay, A. C.: The econometrics of financial markets. (1997) · Zbl 0927.62113
[11] Chen, S.X., 2000. Gamma kernel estimators for density functions. Annals of the Institute of Statistical Mathematics 52, 471--480. · Zbl 0960.62038
[12] Cox, D. R.; Lewis, P. A. W.: The statistical analysis of series of events. (1966) · Zbl 0148.14005
[13] Diamond, D. W.; Verrecchia, R. E.: Constraints on short-selling and asset price adjustments to private information. Journal of financial economics 18, 227-311 (1987)
[14] Diebold, F. X.: Empirical modeling of exchange rates. (1988) · Zbl 0648.90002
[15] Domowitz, I.: Automating the price discovery process: some international comparisons and regulatory implications. Journal of financial sevices research 6, 305-326 (1992)
[16] Drost, F. C.; Nijman, T. E.: Temporal aggregation of GARCH processes. Econometrica 61, 907-927 (1993) · Zbl 0780.62099
[17] Drost, F. C.; Werker, B. J. M.: Closing the GARCH gap: continuous time GARCH modeling. Journal of econometrics 74, 31-57 (1996) · Zbl 0862.90044
[18] Dufour, A., Engle, R.F., 2000. Time and the impact of a trade. Journal of Finance 55, 2467--2498.
[19] Easley, D.; O’hara, M.: Order form and information in securities markets. Journal of finance 46, 905-927 (1991)
[20] Easley, D.; O’hara, M.: Time and the process of security price adjustment. Journal of finance 47, 577-605 (1992)
[21] Engle, R. F.: The econometrics of ultra high frequency data. Econometrica 68, No. 1, 1-22 (2000) · Zbl 1056.91535
[22] Engle, R.F., Lunde, A., 1999. Trades and quotes: a bivariate point process. Working paper, Universities San Diego and Aalborg.
[23] Engle, R.F., Russell, J.R., 1995. Autoregressive conditional duration: a new model for irregularly spaced time series data. Discussion Paper 9427, University of California.
[24] Engle, R. F.; Russell, J. R.: Autoregressive conditional duration: a new model for irregularly spaced transaction data. Econometrica 66, 1127-1162 (1998) · Zbl 1055.62571
[25] French, K. R.; Roll, R.: Stock return variances. The arrival of information and the reaction of traders. Journal of financial economics 17, 5-26 (1986)
[26] Gallant, A. R.: Nonlinear statistical models. (1987) · Zbl 0611.62071
[27] Gallant, A. R.; Tauchen, G.: Which moments to match?. Econometric theory 12, 657-681 (1996)
[28] Ghysels, E.; Jasiak, J.: GARCH for irregularly spaced financial data: the ACD-GARCH model. Studies in nonlinear economics and econometrics 2, 133-149 (1998) · Zbl 1078.91564
[29] Grammig, J.; Maurer, K. -O.: Non-monotonic hazard functions and the autoregressive conditional duration model. The econometrics journal 3, 16-38 (2000) · Zbl 1038.91523
[30] Hall, A., Peixe, F., 2001. A consistent method for the selection of relevant instruments. Working Paper, North Carolina State University. · Zbl 1181.62192
[31] Hansen, L. P.: Large sample properties of generalized method of moments estimators. Econometrica 50, 1029-1054 (1982) · Zbl 0502.62098
[32] Hansen, L. P.: A method for calculating bounds on the asymptotic variance--covariance matrix of generalized method of moments estimators. Journal of econometrics 30, 203-228 (1985) · Zbl 0588.62166
[33] Hau, H., 1999. Information and geography: evidence from the German stock market. Discussion Paper 2297, CEPR.
[34] Hawkes, A. G.: Spectra of some self-exciting and mutually exciting point processes. Biometrika 58, 83-90 (1971) · Zbl 0219.60029
[35] Hayashi, F.; Sims, C. A.: Nearly efficient estimation of time series models with predetermined, but not exogenous, instruments. Econometrica 51, 783-798 (1983) · Zbl 0536.62097
[36] Koenker, R., Machado, J.A.F., 1999. GMM inference when the number of moment conditions is large. Journal of Econometrics, pp. 327--344. · Zbl 0941.62077
[37] Lunde, A., 1999. A generalized gamma autoregressive conditional duration model. Aalborg University.
[38] Madhavan, A.: Market microstructure: a survey. Journal of financial markets 3, 205-258 (2000)
[39] Newey, W. K.; West, K. D.: A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55, 703-708 (1987) · Zbl 0658.62139
[40] O’hara, M.: Market microstructure theory. (1995)
[41] Rich, R. W.; Raymond, J.; Butler, J. S.: Generalized instrumental variables estimation of autoregressive conditional heteroskedastic models. Economics letters 35, 179-185 (1991)
[42] Rubin, I.: Regular point processes and their detection. IEEE transactions on information theory 18, 547-557 (1972) · Zbl 0246.60042
[43] Russell, J., 1999. Econometric modeling of irregularly-spaced multivariate transaction data. Working Paper, University of Chicago, Graduate School of Business.
[44] Russell, J.R., Engle, R.F., 1999. Econometric analysis of discrete-valued, irregularly-spaced financial transactions data. Working Paper, University of Chicago and University of San Diego.
[45] Silverman, B. W.: Density estimation for statistics and data analysis. (1986) · Zbl 0617.62042
[46] West, K. D.: Another heteroskedasticity and autocorrelation consistent covariance matrix estimator. Journal of econometrics 76, 171-191 (1997) · Zbl 0878.62103
[47] West, K.D., Wong, K., Anatolyev, S., 1998. Feasible optimal instrumental variables estimation of linear models with moving average disturbances. SSRI Working Paper 9901, University of Wisconsin.