zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stabilized interior penalty methods for the time-harmonic Maxwell equations. (English) Zbl 1040.78011
Summary: We propose stabilized interior penalty discontinuous Galerkin methods for the indefinite time-harmonic Maxwell system. The methods are based on a mixed formulation of the boundary value problem chosen to provide control on the divergence of the electric field. We prove optimal error estimates for the methods in the special case of smooth coefficients and perfectly conducting boundary using a duality approach.

78M10Finite element methods (optics)
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
Full Text: DOI
[1] Ihlenburg, F.; Babuška, I.: Finite element solution of the Helmholtz equation with high wave number, part I: The h-version of the FEM. Comput. math. Appl. 30, 9-37 (1995) · Zbl 0838.65108
[2] Ihlenburg, F.; Babuška, I.: Finite element solution of the Helmholtz equation with high wave number, part II: The h-p version of the FEM. SIAM J. Numer. anal. 34, 315-358 (1997) · Zbl 0884.65104
[3] Costabel, M.; Dauge, M.: Singularities of electromagnetic fields in polyhedral domains. Arch. ration. Mech. anal. 151, 221-276 (2000) · Zbl 0968.35113
[4] Dauge, M.; Costabel, M.; Martin, D.: Numerical investigation of a boundary penalization method for Maxwell equations. Proceedings of the 3rd European conference on numerical mathematics and advanced applications (ENUMATH-99), 214-221 (2000) · Zbl 0980.78011
[5] M. Dauge, M. Costabel, Weighted regularization of Maxwell equations in polyhedral domains, Tech. Rep. 01-26, IRMAR, University of Rennes, 2001, Numer. Math., in press · Zbl 1019.78009
[6] Nédélec, J.: Mixed finite elements in R3. Numer. math. 35, 315-341 (1980)
[7] Nédélec, J.: A new family of mixed finite elements in R3. Numer. math. 50, 57-81 (1986) · Zbl 0625.65107
[8] Jin, J. -M.: The finite element method in electromagnetics. (1993) · Zbl 0823.65124
[9] Silvester, R.; Ferrari, R.: Finite element methods for electrical engineers. (1996) · Zbl 0587.73157
[10] Monk, P.: A finite element method for approximating the time-harmonic Maxwell equations. Numer. math. 63, 243-261 (1992) · Zbl 0757.65126
[11] Demkowicz, L.; Monk, P.: Discrete compactness and the approximation of Maxwell’s equations in R3. Math. comp. 70, 507-523 (2001) · Zbl 1035.65131
[12] Boffi, D.: Fortin operator and discrete compactness for edge elements. Numer. math. 87, 229-246 (2000) · Zbl 0967.65106
[13] Bossavit, A.: Mixed finite elements and the complex of Whitney forms. The mathematics of finite elements and applications VI, 137-144 (1988)
[14] Hiptmair, R.: Canonical construction of finite elements. Math. comp. 68, 1325-1346 (1999) · Zbl 0938.65132
[15] Hiptmair, R.: Discrete Hodge-operators: an algebraic perspective. J. electromagnetic waves appl. 15, 343-344 (2001)
[16] Vardapetyan, L.; Demkowicz, L.: Hp-adaptive finite elements in electromagnetics. Comput. methods appl. Mech. engrg. 169, 331-344 (1999) · Zbl 0956.78013
[17] Jr., J. Douglas; Dupont, T.: Interior penalty procedures for elliptic and parabolic Galerkin methods, of lecture notes in physics. 58 (1976)
[18] Baker, G.: Finite element methods for elliptic equations using nonconforming elements. Math. comp. 31, 45-59 (1977) · Zbl 0364.65085
[19] Wheeler, M.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. anal. 15, 152-161 (1978) · Zbl 0384.65058
[20] Arnold, D.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. anal. 19, 742-760 (1982) · Zbl 0482.65060
[21] P. Houston, C. Schwab, E. Süli, Discontinuous hp finite element methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal. 39 (2002) 2133--2163 · Zbl 1015.65067
[22] Rivière, B.; Wheeler, M. F.; Girault, V.: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. anal. 39, 901-931 (2001) · Zbl 1010.65045
[23] Rivière, B.; Wheeler, M.; Girault, V.: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems, part I. Computat. geosci. 3, No. 4, 337-360 (1999) · Zbl 0951.65108
[24] Cockburn, B.; Shu, C. -W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. anal. 35, 2440-2463 (1998) · Zbl 0927.65118
[25] Castillo, P.; Cockburn, B.; Perugia, I.; Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. anal. 38, 1676-1706 (2000) · Zbl 0987.65111
[26] Baumann, C.; Oden, J.: A discontinuous hp-finite element method for convection-diffusion problems. Comput. methods appl. Mech. engrg. 175, 311-341 (1999) · Zbl 0924.76051
[27] Oden, J.; Babuška, I.; Baumann, C.: A discontinuous hp-finite element method for diffusion problems. J. comput. Phys. 146, 491-519 (1998) · Zbl 0926.65109
[28] Arnold, D.; Brezzi, F.; Cockburn, B.; Marini, L.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. anal. 39, 1749-1779 (2001) · Zbl 1008.65080
[29] S. Prudhomme, F. Pascal, J. Oden, A. Romkes, Review of a priori error estimation for discontinuous Galerkin methods, Tech. Rep. 2000-27, TICAM, University of Texas at Austin, 2000 · Zbl 1007.65084
[30] I. Perugia, D. Schötzau, The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell’s equations, Tech. Rep. 1774, IMA, University of Minnesota, 2001, Math. Comp., in press
[31] O. Cessenat, Application d’une nouvelle formulation variationnelle aux équations d’ondes harmoniques. Problèmes de Helmholtz 2D et de Maxwell 3D, Ph.D. thesis, Université Paris IX Dauphine, 1996
[32] Ben Belgacem, F.; Buffa, A.; Maday, Y.: The mortar method for the Maxwell’s equations in 3D. CR acad. Sci. Paris, série I 329, 903-908 (1999) · Zbl 0941.65118
[33] Buffa, A.; Maday, Y.; Rapetti, F.: A sliding mesh-mortar method for a two dimensional eddy currents model of electric engines. Math. models appl. Sci. 35, 191-228 (2001) · Zbl 0986.35111
[34] Wolfe, C.; Navsariwala, U.; Gedney, S.: A parallel finite-element tearing and interconnecting algorithm for solution of the vector wave equation with PML absorbing medium. IEEE trans. Antennas propagat. 48, 278-284 (2000)
[35] Chen, Z.; Du, Q.; Zou, J.: Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients. SIAM J. Numer. anal. 37, 1542-1570 (2000) · Zbl 0964.78017
[36] Caorsi, S.; Fernandes, P.; Raffetto, M.: On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems. SIAM J. Numer. anal. 38, 580-607 (2000) · Zbl 1005.78012
[37] Amrouche, C.; Bernardi, C.; Dauge, M.; Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. models appl. Sci. 21, 823-864 (1998) · Zbl 0914.35094
[38] Ciarlet, P.: The finite element method for elliptic problems. (1978) · Zbl 0383.65058
[39] Lions, J. L.; Magenes, E.: Problèmes aux limites non-homogènes et applications. (1968) · Zbl 0165.10801
[40] B. Cockburn, G. Kanschat, D. Schötzau, C. Schwab, Local discontinuous Galerkin methods for the Stokes system, Tech. Rep. 214, Minnesota Supercomputing Institute, University of Minnesota, 2000, SIAM. J. Numer. Anal. 40 (2002) 319-343 · Zbl 1032.65127
[41] P. Castillo, Performance of discontinuous Galerkin methods for elliptic partial differential equations, Tech. Rep. 1764, IMA, University of Minnesota, 2001
[42] A. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms, Math. Comp. 28 (1974) 959--962 · Zbl 0321.65059
[43] Franca, L.; Hughes, T.; Stenberg, R.: Stabilized finite element methods. Incompressible computational fluid dynamics: trends and advances, 87-107 (1993) · Zbl 1189.76339
[44] Girault, V.; Raviart, P.: Finite element approximations of the Navier--Stokes equations. (1986) · Zbl 0585.65077
[45] Alonso, A.; Valli, A.: An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations. Math. comp. 68, 607-631 (1999) · Zbl 1043.78554