×

Universality of Hecke \(L\)-functions in the Grossencharacter-aspect. (English) Zbl 1041.11060

Let \(K=\mathbb{Q}(i)\). For an ideal \(\mathfrak a=(\alpha)\in K\), the \(m\)th Grössencharacter is given by \(\lambda^m(\mathfrak a):=(\alpha/| \alpha| )^{4m}\) for \(m\in\mathbb Z.\) For \(\operatorname{Re} s>1\), the Hecke \(L\)-function is defined by \[ L(s,\lambda^m)= \sum_{\mathfrak {a}} {\lambda^m (\mathfrak a)\over N(\mathfrak a)^s}. \] Let \(C\) be a compact subset in the strip \(1/2 <\operatorname{Re} s <1\). Let \(f(s)\) be any continuous function on \(C\) such that \(f(s)\neq0\) on \(C\) and \(f(s)\) is holomorphic in the interior of \(C\). Then the authors prove that for every \(\varepsilon >0\), \[ \liminf_{T\to \infty}{1\over T^2} \mu\biggl(\bigl\{(t, m)\in[0,T] \times\{0,\dots, [T]\}\,| \, \max_{s\in C}| L(s+it, \lambda^m)-f(s)| < \varepsilon\bigr\}\biggr)>0, \] where \(\mu\) is the product measure on \(\mathbb{R}\times\mathbb{Z}\). Universality theorems for Hecke \(L\)-functions in \(t\)-aspect was proved by H. Mishou [Acta Arith. 98, No. 4, 395–410 (2001; Zbl 0982.11050), ibid. 110, No. 1, 45–71 (2003; Zbl 1031.11052)]. The \(\chi\)-universality of the Dirichlet L-function was investigated by S. M. Gonek [Ph. D. Thesis, University of Michigan (1979)], by B. Bagchi [Ph. D. Thesis, Indian Statistical Institute, Calcutta (1981)], and by K. M. Èminyan [Math. Notes 47, No. 6, 618–622 (1990); translation from Mat. Zametki 47, No. 6, 132–137 (1990; Zbl 0713.11058)].

MSC:

11M41 Other Dirichlet series and zeta functions
11R42 Zeta functions and \(L\)-functions of number fields
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Duke, W.: Some problems in multidimensional analytic number theory. Acta Arith., 52 , 203-228 (1989). · Zbl 0631.12008
[2] Gonek, S. M.: Analytic properties of zeta and \(L\)-functions. Ph.D. Thesis, University of Michigan (1979).
[3] Karatsuba, A. A., and Voronin, S. M.: The Riemann Zeta-Function, Walter de Gruyter, Berlin-New York (1992). · Zbl 0756.11022
[4] Mishou, H.: The universality theorem for \(L\)-functions associated with ideal class characters. Acta Arith., 98 , 395-410 (2001). · Zbl 0982.11050 · doi:10.4064/aa98-4-5
[5] Mishou, H.: The universality theorem for Hecke \(L\)-functions. (Preprint). · Zbl 1031.11052 · doi:10.4064/aa110-1-4
[6] Mishou, H.: The universality theorem for Hekce \(L\)-functions in the \((m,t)\)-aspect. (Preprint). · Zbl 1089.11050 · doi:10.3836/tjm/1244208285
[7] Nagoshi, H.: The universality of families of automorphic \(L\)-functions. (Preprint). · Zbl 1047.11516
[8] Nagoshi, H.: The universality of \(L\)-functions attached to eigenfunctions for \(SL(2, \mathbf{Z})\). (Preprint).
[9] Voronin, S. M.: A theorem on the “universality” of the Riemann zeta-function. Izv. Akad. Nauk SSSR Ser. Mat., 39 , 475-486 (1975). (In Russian); Math. USSR-Izv., 9 , 443-453 (1975). (English Translation). · Zbl 0315.10037
[10] Petridis, Y., and Sarnak, P.: Quantum unique ergodicity for \(SL_2({\mathcal O})\backslash H^3\) and estimates for \(L\)-functions. J. Evol. Equ., 1 (3), 277-290 (2001). · Zbl 0995.11036 · doi:10.1007/PL00001371
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.