×

Noncommutative Burkholder/Rosenthal inequalities. (English) Zbl 1041.46050

This is the third in a series of papers that pushed the non-commutative martingale theory to new limits, the first two being the paper of G. Pisier and Q. Xu on Burkholder-Gundy inequalities in the tracial case [Commun. Math. Phys. 189, No. 3, 667–698 (1997; Zbl 0898.46056)] and that of M. Junge on Doob’s inequalities in the non-tracial case [J. Reine Angew. Math. 549, 149–190 (2002; Zbl 1004.46043)].
First, the authors generalize the Burkholder-Gundy inequalities to the non-tracial case. This makes it possible to give a description of the duals of the Hardy spaces \(H^p\) as the spaces of martingale difference sequences in \(L^q\) of bounded mean oscillation (recovering BMO for \(q=\infty\)). Secondly, they prove the Burkholder martingale inequalities with the conditioned square function (of which the Rosenthal inequality is a special case) in full generality. Thirdly, they extend the dual form of Doob’s inequality from Junge’s paper (by reversing it) to the values \(0<p<1\). Finally, the non-faithful case and the order of growth of the involved constants are discussed.

MSC:

46L53 Noncommutative probability and statistics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] ACCARDI, L. and CECCHINI, C. (1982). Conditional expectations in von Neumann algebras and a theorem of Takesaki. J. Funct. Anal. 45 245-273. · Zbl 0483.46043
[2] ACCARDI, L. and VON WALDENFELS, M. (1990). Quantum Probability and Applications. Lecture Notes in Math. 1442. Springer, Berlin.
[3] BIANE, P. and SPEICHER, R. (1998). Stochastic calculus with respect to free Brownian motion and analysis on Wigner space. Probab. Theory Related Fields 112 373-409. · Zbl 0919.60056
[4] BURKHOLDER, D. L. (1973). Distribution function inequalities for martingales. Ann. Probab. 1 19-42. · Zbl 0301.60035
[5] BURKHOLDER, D. L. (1979). Martingale theory and harmonic analysis in Euclidean spaces. In Harmonic Analy sis in Euclidean Spaces (G. Weiss and S. Wainger, eds.) 283-301. Amer. Math. Soc., Providence, RI. · Zbl 0417.60055
[6] BURKHOLDER, D. L. and GUNDY, R. F. (1970). Extrapolation and interpolation of quasi-linear operators on martingales. Acta Math. 124 249-304. · Zbl 0223.60021
[7] CARLEN, E. A. and KRÉE, P. (1998). On martingale inequalities in non-commutative stochastic analysis. J. Funct. Anal. 158 475-508. · Zbl 0935.46054
[8] CECCHINI, C. and PETZ, D. (1985). Norm convergence of generalized martingales in Lp-spaces over von Neumann algebras. Acta Sci. Math. (Szeged) 48 55-63. · Zbl 0602.46066
[9] CONNES, A. (1973). Une classification des facteurs de ty pe III. Ann. Sci. École Norm. Sup. 6 133-252. · Zbl 0274.46050
[10] CUCULESCU, I. and OPREA, A. G. (1994). Noncommutative Probability. Kluwer, Dordrecht. · Zbl 0837.46050
[11] EFFROS, E. and RUAN, Z.-J. (2000). Operator Spaces. Oxford Univ. Press. · Zbl 0802.46014
[12] GARSIA, A. M. (1973). Martingale Inequalities. Benjamin, Reading, MA. · Zbl 0284.60046
[13] FIDALEO, F. (2001). Weak and strong martingale convergence of generalized conditional expectations in non-commutative Lp-spaces. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 4 195-213. · Zbl 1061.46046
[14] HAAGERUP, U. (1979). Lp-spaces associated with an arbitrary von Neumann algebra. In Algèbres d’opérateurs et leurs applications en physique mathématique 175-184. Éditions du CNRS, Paris. · Zbl 0426.46045
[15] HAAGERUP, U. (1980). Non-commutative integration theory. Lecture given at the Sy mposium in Pure Mathematics of the Amer. Math. Soc., Queens Univ., Kingston, Ontario.
[16] HIAI, F. and TSUKADA, M. (1987). Generalized conditional expectations and martingales in non-commutative Lp-spaces. J. Operator Theory 18 265-288. · Zbl 0663.46061
[17] JAJTE, R. (1985). Strong Limit Theorems in Non-Commutative Probability. Lecture Notes in Math. 1110. Springer, Berlin. · Zbl 0554.46033
[18] JAJTE, R. (1991). Strong Limit Theorems in Non-Commutative L2-Spaces. Lecture Notes in Math. 1477. Springer, Berlin. · Zbl 0743.46069
[19] JUNGE, M. (2002). Doob’s inequality for non-commutative martingales. J. Reine Angew. Math. 549 149-190. · Zbl 1004.46043
[20] JUNGE, M. and MUSAT, M. (2002). A noncommutative version of the John-Nirenberg theorem. · Zbl 1173.46046
[21] JUNGE, M. and XU, Q. (2002). Non-commutative Burkholder/Rosenthal inequalities: Applications.
[22] JUNGE, M. and XU, Q. (2002). The optimal orders of growth of the best constants in some non-commutative martingale inequalities.
[23] KADISON, R. V. and RINGROSE, J. R. (1986). Fundamentals of the Theory of Operator Algebras II. Academic Press, New York. · Zbl 0991.46031
[24] KOSAKI, H. (1984). Applications of the complex interpolation method to a von Neumann algebra. J. Funct. Anal. 56 29-78. · Zbl 0604.46063
[25] LUST-PIQUARD, F. (1986). Inégalités de Khintchine dans Cp (1 &lt; p &lt;). C. R. Acad. Sci. Paris 303 289-292. · Zbl 0592.47038
[26] LUST-PIQUARD, F. and PISIER, G. (1991). Non commutative Khintchine and Paley inequalities. Arkiv Mat. 29 241-260. · Zbl 0755.47029
[27] MEy ER, P. A. (1995). Quantum Probability for Probabilists. Lecture Notes in Math. 1538. Springer, Berlin.
[28] MITREA, M. (1994). Clifford Wavelets, Singular Integrals, and Hardy Spaces. Lecture Notes in Math. 1575. Springer, Berlin. · Zbl 0822.42018
[29] MUSAT, M. (2002). Interpolation between non-commutative BMO and noncommutative Lp-spaces. J. Funct. Anal. · Zbl 1042.46038
[30] PARTHASARATHY, K. R. (1992). An Introduction to Quantum Stochastic Calculus. Birkhäuser, Boston. · Zbl 0751.60046
[31] PEDERSEN, G. K. and TAKESAKI, M. (1973). The Radon-Nikody m theorem for von Neumann algebras. Acta Math. 130 53-87. · Zbl 0262.46063
[32] PISIER, G. (1998). Non-commutative vector valued Lp-spaces and completely p-summing maps. Astérisque 247. · Zbl 0937.46056
[33] PISIER, G. (2000). An inequality for p-orthogonal sums in non-commutative Lp. Illinois J. Math. 44 901-923. · Zbl 0976.60016
[34] PISIER, G. and XU, Q. (1997). Non-commutative martingale inequalities. Comm. Math. Phy s. 189 667-698. · Zbl 0898.46056
[35] RANDRIANANTOANINA, N. (2002). Non-commutative martingale transforms. J. Funct. Anal. 194 181-212. · Zbl 1030.46083
[36] ROSENTHAL, H. P. (1970). On the subspaces of Lp (p &gt; 2) spanned by sequences of independent random variables. Israel J. Math. 8 273-303. · Zbl 0213.19303
[37] STEIN, E. M. (1970). Topics in Harmonic Analy sis Related to the Littlewood-Paley Theory. Princeton Univ. Press. · Zbl 0193.10502
[38] STRATILA, S. (1981). Modular Theory in Operator Algebras. Abacus Press, Tunbridge, Wells, UK. · Zbl 0504.46043
[39] TAKESAKI, M. (1970). Tomita’s Theory of Modular Hilbert Algebras and Its Applications. Lecture Notes in Math. 128. Springer, Berlin. · Zbl 0193.42502
[40] TAKESAKI, M. (1972). Conditional expectations in von Neumann algebras. J. Funct. Anal. 9 306-321. · Zbl 0245.46089
[41] TAKESAKI, M. (1973). Duality for crossed products and the structure of von Neumann algebras of ty pe III. Acta Math. 131 249-310. · Zbl 0268.46058
[42] TERP, M. (1981). Lp spaces associated with von Neumann algebras. Notes, Math. Institute, Copenhagen Univ.
[43] TERP, M. (1982). Interpolation spaces between a von Neumann algebra and its predual. J. Operator Theory 8 327-360. · Zbl 0532.46035
[44] VOICULESCU, D. V. (1991). Limit laws from random matrices and free products. Invent. Math. 104 201-220. · Zbl 0736.60007
[45] VOICULESCU, D. V., Dy KEMA, K. J. and NICA, A. (1992). Free Random Variables. Amer. Math. Soc., Providence, RI.
[46] URBANA, ILLINOIS 61801 E-MAIL: junge@math.uiuc.edu WEB: http://www.math.uiuc.edu/ mjunge/ LABORATOIRE DE MATHÉMATIQUES UNIVERSITÉ DE FRANCHE-COMTÉ 25030 BESANÇON CEDEX FRANCE E-MAIL: qx@math.univ-fcomte.fr URL:
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.