Subnormality and composition operators on the Bergman space. (English) Zbl 1041.47010

C. Cowen and T. Kriete [J. Funct. Anal. 81, 298–319 (1988; Zbl 0669.47012)] characterized the analytic maps \(\varphi: \mathbb{D}\to \mathbb{D}\) (\(\mathbb{D}=\) the unit disk) for which the composition operator \(C_\varphi \) defined by \(C_\varphi f =f \circ \varphi \) on the Hardy space \(H^2(\mathbb{D})\) has a subnormal adjoint. Specifically, they showed that under a regularity condition near the Denjoy-Wolff point \(d\), \(| d| =1\), \(C_\varphi^*\) is subnormal on \(H^2\) if and only if \[ \varphi (z) = \frac{(r+s)z+(1-s)d}{r(1-s)\overline{d}z+(1+sr)} \] where \(0< s = \varphi ' (d) < 1 \) and \(0 \leq r \leq 1\). C. Cowen [Integral Equations Oper. Theory 15, 167–171 (1992; Zbl 0773.47009)] proved that if for \(\varphi \), \(C_\varphi^*\) is subnormal on \(H^2\), then \(\varphi \) also gives rise to a subnormal operator \(C_\varphi^*\) on \(A^2(\mathbb{D})\).
In the paper under review, the author characterizes those analytic selfmaps \(\varphi\) of \(\mathbb{D}\), for which \(C_\varphi^*\) is subnormal on \(A^2(\mathbb{D})\). The conditions are as those in the Hardy space case but with large range for the parameter \(r\); in fact, \(r\) is allowed in \([ - 1/7, 1]\).


47B33 Linear composition operators
47B32 Linear operators in reproducing-kernel Hilbert spaces (including de Branges, de Branges-Rovnyak, and other structured spaces)
47B20 Subnormal operators, hyponormal operators, etc.
Full Text: DOI


[1] I. N. Baker and Ch. Pommerenke,On the iteration of analytic functions in a halfplane. II, J. London Math. Soc. (2)20 (1979), no. 2, 255–258. · Zbl 0419.30025 · doi:10.1112/jlms/s2-20.2.255
[2] J. B. Conway,The theory of subnormal operators, American Mathematical Society, Providence, RI, 1991. · Zbl 0743.47012
[3] C. C. Cowen,Iteration and the solution of functional equations for functions analytic in the unit disk, Trans. Amer. Math. Soc.265 (1981), 69–95. · Zbl 0476.30017 · doi:10.1090/S0002-9947-1981-0607108-9
[4] C. C. Cowen,Composition operators on H 2, J. Operator Theory9 (1983), 77–106.
[5] C. C. Cowen,Subnormality of the Cesàro operator and a semigroup of composition operators, Indiana Univ. Math. J.33 (1984), 305–318. · Zbl 0557.47018 · doi:10.1512/iumj.1984.33.33017
[6] C. C. Cowen,Linear fraction composition operators on H 2, Integral Equations Operator Theory11 (1988), 167–171. · Zbl 0638.47027 · doi:10.1007/BF01272115
[7] Composition operators on Hilbert spaces of analytic functions: a status report, Operator theory: operator algebras and applications, Part 1 (Durham, NH, 1988), Amer. Math. Soc., Providence, RI, 1990, pp. 131–145.
[8] C. C. Cowen,Transferring subnormality of adjoint composition operators, Integral Equations Operator Theory15 (1992), no. 1, 167–171. · Zbl 0773.47009 · doi:10.1007/BF01193772
[9] C. C. Cowen and T. L. Kriete,Subnormality and composition operators on H 2, J. Functional Analysis81 (1988), 298–319. · Zbl 0669.47012 · doi:10.1016/0022-1236(88)90102-4
[10] C. C. Cowen and B. D. MacCluer,Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995. · Zbl 0873.47017
[11] A. Denjoy,Sur l’iterations des fonctions analytique, C. R. Acad. Sci. Paris Sér. A182 (1926), 255–257. · JFM 52.0309.04
[12] M. R. Embry,A generalization of the Halmos-Bran criterion for subnormality, Acta. Sci. Math. (Szeged)35 (1973), 61–64. · Zbl 0263.47023
[13] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi,Tables of integral transforms. Vol. I, McGraw-Hill, New York, 1954, Based, in part, on notes left by Harry Bateman. · Zbl 0055.36401
[14] K. Hoffman,Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.
[15] T. L. Kriete,Cosubnormal dilation semigroups on Bergman spaces, J. Operator Theory17 (1987), 191–200. · Zbl 0625.47016
[16] T. L. Kriete and B. D. MacCluer,Composition operators on large weighted Bergman spaces, Indiana Univ. Math. J.41 (1992), 755–788. · Zbl 0772.30043 · doi:10.1512/iumj.1992.41.41040
[17] T. L. Kriete and H. C. Rhaly,Translation semigroups on reproducing kernel Hilbert spaces, J. Operator Theory17 (1987), 33–83. · Zbl 0619.47033
[18] A. Lambert,Subnormality and weighted shifts, J. London Math. Soc.14 (1976), no. 2, 476–480. · Zbl 0358.47014 · doi:10.1112/jlms/s2-14.3.476
[19] E. H. Lieb and M. Loss,Analysis, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1996. · Zbl 0873.26002
[20] A. E. Richman,Subnormality and composition operators on the weighted Bergman spaces, Ph.D. thesis, University of Virginia, May 2000.
[21] W. Rudin,Functional Analysis, McGraw-Hill, New York, 1973. · Zbl 0253.46001
[22] W. Rudin,Real and complex analysis, third ed., McGraw-Hill, New York, 1987. · Zbl 0925.00005
[23] H. Sadraoui,Hyponormality of Toeplitz and composition operators, Ph.D. thesis, Purdue University, 1992.
[24] J. Wolff,Sur l’itération des fonctions, C. R. Acad. Sci. Paris Sér. A182 (1926), 42–43, 200–201. · JFM 52.0309.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.