Noubiap, Roger Fandom; Seidel, Wilfried An algorithm for calculating \(\Gamma\)-minimax decision rules under generalized moment conditions. (English) Zbl 1041.62005 Ann. Stat. 29, No. 4, 1094-1116 (2001). Summary: We present an algorithm for calculating a \(\Gamma\)-minimax decision rule, when \(\Gamma\) is given by a finite number of generalized moment conditions. Such a decision rule minimizes the maximum of the integrals of the risk function with respect to all distributions in \(\Gamma\). The inner maximization problem is approximated by a sequence of linear programs. This approximation is combined with an elimination technique which quickly reduces the domain of the variables of the outer minimization problem. To test for convergence in a final step, the inner maximization problem has to be completely solved once for the candidate of the \(\Gamma\)-minimax rule found by the algorithm. For an infinite, compact parameter space, this is done by semi-infinite programming. The algorithm is applied to calculate robustified Bayesian designs in a logistic regression model and \(\Gamma\)-minimax tests in monotone decision problems. Cited in 7 Documents MSC: 62C20 Minimax procedures in statistical decision theory 90C34 Semi-infinite programming 90C90 Applications of mathematical programming 90C05 Linear programming 65C60 Computational problems in statistics (MSC2010) 62F35 Robustness and adaptive procedures (parametric inference) Keywords:Bayesian robustness; experimental design; minimax problems × Cite Format Result Cite Review PDF Full Text: DOI OA License References: [1] Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis. Springer, NewYork. · Zbl 0572.62008 [2] Berger, J. O. (1990). Robust Bayesian analysis: sensitivity to the prior. J. Statist. Plann. Inference 25 303-328. · Zbl 0747.62029 · doi:10.1016/0378-3758(90)90079-A [3] Betr o, B., Ruggeri, F. and Me\?czarski, M. (1994). Robust Bayesian analysis under generalized moment conditions. J. Statist. Plann. Inference 41 257-266. · Zbl 0803.62021 · doi:10.1016/0378-3758(94)90022-1 [4] Betr o, B. and Guglielmi, A. (1996). Numerical robust bayesian analysis under generalized moment conditions (with discussion) In Bayesian Robustness (J. O. Berger, B. Betr o, E. Moreno, L. R. Pericchi, F. Ruggeri, G. Salinetti and L. Wasserman, eds.) 3-19. IMS, Hayward, CA. · doi:10.1214/lnms/1215453058 [5] Dall’Aglio, M. and Salinetti, G. (1994). Bayesian robustness, moment problem and semiinfinite linear programming, Poster Presented at the Fifth Valencia Meeting, Alicante (Spain), 5-9 June 1994. [6] Goberna, M. A. and L ópez, M. A. (1998). Linear Semi-Infinite Optimization. Wiley, Chichester. · Zbl 0909.90257 [7] Gustafson, S. A. (1973). Nonlinear systems in semi-infinite programming. In Numerical Solution of Systems of Nonlinear Algebraic Equations (G. D. Byrne and C. A. Hall, eds.) 63-99. Academic Press, NewYork. · Zbl 0277.65041 [8] Hettich, R. and Kortanek, K. O. (1993). Semi-infinite programming: theory, methods and applications. SIAM Rev. 35 380-429. JSTOR: · Zbl 0784.90090 · doi:10.1137/1035089 [9] Hettich, R. and Zencke, P. (1982). Numerische Methoden der Approximation und semi-infiniten Optimierung. Teubner, Stuttgart. · Zbl 0481.65033 [10] Kemperman, J. H. B. (1987). Geometry of the moment problem. In Moments in Mathematics (H. J. Landau, ed.) 37 1-15. Amer. Math. Soc., Providence, RI. · Zbl 0632.60015 [11] Krumbholz, W. (1982). Die Bestimmung einfacher Attributpr üfpläne unter Ber ücksichtigung von unvollständiger Vorinformation. Allgemeines Stat. Archiv 66 240-253. [12] Lai, H. C. and Wu, S. Y. (1992). On linear semi-infinite programming problems, an algorithm. Numer. Funct. Anal. Optim. 13 287-304. · Zbl 0758.90069 · doi:10.1080/01630569208816479 [13] Nelder, J. A. and Mead, R. (1965). A Simplex method for function minimization. Comput. J. 7 308-313. · Zbl 0229.65053 · doi:10.1093/comjnl/7.4.308 [14] Parkinson, J. M. and Hutchinson, D. (1972). An investigation into the efficiency of variants of the simplex method. In Numerical Methods for Nonlinear Optimization (F. A. Lootsma, ed.) 115-135. Academic Press, NewYork. · Zbl 0267.65055 [15] Reemtsen, R. and G örner, S. (1998). Numerical methods for semi-infinite programming: a survey. In Semi-Infinite Programming (R. Reemtsen, and J. J. R ückmann, eds.) 195-275. Kluwer, Boston. · Zbl 0908.90255 [16] Reemtsen, R. and R ückmann, J. J. (eds.) (1998). Semi-Infinite Programming. Kluwer, Boston. · Zbl 0890.00054 [17] Roleff, K. (1979). A stable multiple exchange algorithm for linear SIP, Lecture Notes in Control and Inform. Sci. 15 83-96. Springer, Berlin. · Zbl 0434.90057 [18] Schmitz, N. (1992). Optimal Sequentially Planned Decision Procedures. Lecture Notes in Statist. 79. Springer, Berlin. · Zbl 0771.62057 [19] Sitter, R. R. (1992). Robust designs for binary data. Biometrics 48 1145-1155. JSTOR: · doi:10.2307/2532705 [20] Smith, J. E. (1995). Generalized Chebychev inequalities: theory and application. In Decision Analysis, Operations Research 43 807-825. JSTOR: · Zbl 0842.90002 · doi:10.1287/opre.43.5.807 [21] Thyregod, P. (1974). Bayesian single sampling acceptance plans for finite lot sizes. J. Roy. Statist. Soc. Ser. B 36 305-319. JSTOR: · Zbl 0287.62058 [22] Winkler, G. (1988). Extreme points of moment sets. Math. Oper. Res. 13 581-587. JSTOR: · Zbl 0669.60009 · doi:10.1287/moor.13.4.581 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.