×

Edgeworth expansions for semiparametric Whittle estimation of long memory. (English) Zbl 1041.62012

Summary: The semiparametric local Whittle or Gaussian estimate of the long memory parameter is known to have especially nice limiting distributional properties, being asymptotically normal with a limiting variance that is completely known. However, in moderate samples the normal approximation may not be very good, so we consider a refined, Edgeworth, approximation, for both a tapered estimate and the original untapered one. For the tapered estimate, our higher-order correction involves two terms, one of order \(m^{-1/2}\) (where m is the bandwidth number in the estimation), the other a bias term, which increases in m; depending on the relative magnitude of the terms, one or the other may dominate, or they may balance. For the untapered estimate we obtain an expansion in which, for m increasing fast enough, the correction consists only of a bias term. We discuss applications of our expansions to improved statistical inference and bandwidth choice. We assume Gaussianity, but in other respects our assumptions seem mild.

MSC:

62E20 Asymptotic distribution theory in statistics
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62G20 Asymptotic properties of nonparametric inference

References:

[1] ANDREWS, D. W. K. and GUGGENBERGER, P. (2003). A bias-reduced log-periodogram regression estimator for the long memory parameter. Econometrica 71 675-712. JSTOR: · Zbl 1153.62354 · doi:10.1111/1468-0262.00420
[2] ANDREWS, D. W. K. and SUN, Y. (2001). Local poly nomial Whittle estimation of long range dependence. Preprint. Cowles Foundation for Research in Economics, Yale Univ.
[3] BENTKUS, R. Y. and RUDZKIS, R. A. (1982). On the distribution of some statistical estimates of a spectral density. Theory Probab. Appl. 27 795-814. · Zbl 0518.62074 · doi:10.1137/1127088
[4] BHATTACHARy A, R. N. and GHOSH, J. K. (1978). On the validity of the formal Edgeworth expansion. Ann. Statist. 6 434-451. · Zbl 0396.62010 · doi:10.1214/aos/1176344134
[5] BHATTACHARy A, R. N. and RANGA RAO, R. (1976). Normal Approximation and Asy mptotic Expansions. Wiley, New York.
[6] BRILLINGER, D. R. (1975). Time Series: Data Analy sis and Theory. Holden Day, San Francisco.
[7] CHIBISOV, D. M. (1972). An asy mptotic expansion for the distribution of a statistic admitting an asy mptotic expansion. Theory Probab. Appl. 17 620-630. · Zbl 0279.60018 · doi:10.1137/1117075
[8] FOX, R. and TAQQU, M. S. (1986). Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time series. Ann. Statist. 14 517-532. · Zbl 0606.62096 · doi:10.1214/aos/1176349936
[9] GEWEKE, J. and PORTER-HUDAK, S. (1983). The estimation and application of long memory time series models. J. Time Ser. Anal. 4 221-238. · Zbl 0534.62062 · doi:10.1111/j.1467-9892.1983.tb00371.x
[10] GIRAITIS, L., ROBINSON, P. M. and SAMAROV, A. (1997). Rate optimal semiparametric estimation of the memory parameter of the Gaussian time series with long range dependence. J. Time Ser. Anal. 18 49-60. · Zbl 0870.62073 · doi:10.1111/1467-9892.00038
[11] GIRAITIS, L., ROBINSON, P. M. and SAMAROV, A. (2000). Adaptive semiparametric estimation of the memory parameter. J. Multivariate Anal. 72 183-207. · Zbl 1065.62513 · doi:10.1006/jmva.1999.1865
[12] HALL, P. (1991). Edgeworth expansions for nonparametric density estimators, with applications. Statistics 22 215-232. · Zbl 0809.62031 · doi:10.1080/02331889108802305
[13] HANNAN, E. J. (1973). The asy mptotic theory of linear time series models. J. Appl. Probab. 10 130-145. JSTOR: · Zbl 0261.62073 · doi:10.2307/3212501
[14] HENRY, M. and ROBINSON, P. M. (1996). Bandwidth choice in Gaussian semiparametric estimation of long range dependence. Athens Conference on Applied Probability and Time Series Analy sis. Time Series Analy sis. Lecture Notes in Statist. 115 220-232. Springer, New York.
[15] HURVICH, C. M. and BRODSKY, J. (2001). Broadband semiparametric estimation of the memory parameter of a long memory time series using fractional exponential models. J. Time Ser. Anal. 22 221-249. · Zbl 0974.62081 · doi:10.1111/1467-9892.00220
[16] HURVICH, C. M. and CHEN, W. W. (2000). An efficient taper for potentially overdifferenced long memory time series. J. Time Ser. Anal. 21 155-180. · Zbl 0958.62085 · doi:10.1111/1467-9892.00179
[17] HURVICH, C. M. and RAY, B. (1995). Estimation of the memory parameter for nonstationary or noninvertable fractionally integrated processes. J. Time Ser. Anal. 16 17-42. · Zbl 0813.62081 · doi:10.1111/j.1467-9892.1995.tb00221.x
[18] IBRAGIMOV, I. A. and HAS’MINSKII, R. Z. (1981). Statistical Estimation. Asy mptotic Theory. Springer, New York. · Zbl 0389.62024
[19] JANACEK, G. J. (1982). Determining the degree of differencing for time series via the log spectrum. J. Time Ser. Anal. 3 177-183. · doi:10.1111/j.1467-9892.1982.tb00340.x
[20] KÜNSCH, H. (1987). Statistical aspects of self-similar processes. In Proc. First World Congress of the Bernoulli Society (Yu. A. Prokhorov and V. V. Sazonov, eds.) 1 67-74. VNU Science Press, Utrecht. · Zbl 0673.62073
[21] LIEBERMAN, O., ROUSSEAU, J. and ZUCKER, D. M. (2001). Valid Edgeworth expansion for the sample autocorrelation function under long range dependence. Econometric Theory 17 257-275. JSTOR: · Zbl 1179.62029 · doi:10.1017/S0266466601171094
[22] MOULINES, E. and SOULIER, P. (1999). Broadband log-periodogram regression of time series with long range dependence. Ann. Statist. 27 1415-1439. · Zbl 0962.62085 · doi:10.1214/aos/1017938932
[23] NISHIy AMA, Y. and ROBINSON, P. M. (2000). Edgeworth expansions for semiparametric averaged derivatives. Econometrica 68 931-979. · Zbl 1022.62013 · doi:10.1111/1468-0262.00142
[24] ROBINSON, P. M. (1995a). Log-periodogram regression of time series with long range dependence. Ann. Statist. 23 1048-1072. · Zbl 0838.62085 · doi:10.1214/aos/1176324636
[25] ROBINSON, P. M. (1995b). Gaussian semiparametric estimation of long range dependence. Ann. Statist. 23 1630-1661. · Zbl 0843.62092 · doi:10.1214/aos/1176324317
[26] ROBINSON, P. M. (1995c). The approximate distribution of nonparametric regression estimates. Statist. Probab. Lett. 23 193-201. · Zbl 0819.62035 · doi:10.1016/0167-7152(94)00113-M
[27] ROBINSON, P. M. and HENRY, M. (1999). Long and short memory conditional heteroscedasticity in estimating the memory parameter of levels. Econometric Theory 15 299-336. JSTOR: · Zbl 1054.62584 · doi:10.1017/S0266466699153027
[28] ROBINSON, P. M. and HENRY, M. (2003). Higher-order kernel semiparametric M-estimation of long memory. J. Econometrics 114 1-27. · Zbl 1023.62106 · doi:10.1016/S0304-4076(02)00208-7
[29] TANIGUCHI, M. (1991). Higher-Order Asy mptotic Theory for Time Series Analy sis. Lecture Notes in Statist. 68. Springer, New York.
[30] VELASCO, C. (1999a). Nonstationary log-periodogram regression. J. Econometrics 91 325-371. · Zbl 1041.62533 · doi:10.1016/S0304-4076(98)00080-3
[31] VELASCO, C. (1999b). Gaussian semiparametric estimation of nonstationary time series. J. Time Ser. Anal. 20 87-127. · Zbl 0922.62093 · doi:10.1111/1467-9892.00127
[32] VELASCO, C. and ROBINSON, P. M. (2001). Edgeworth expansions for spectral density estimates and studentized sample mean. Econometric Theory 17 497-539. JSTOR: · Zbl 1018.62013 · doi:10.1017/S0266466601173019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.