×

On \(M\)-estimators and normal quantiles. (English) Zbl 1041.62018

Summary: This paper explores a class of robust estimators of normal quantiles filling the gap between maximum likelihood estimators and empirical quantiles. Our estimators are linear combinations of M-estimators. Their asymptotic variances can be arbitrarily close to variances of the maximum likelihood estimators. Compared with empirical quantiles, the new estimators offer considerable reduction of variance at near normal probability distributions.

MSC:

62F12 Asymptotic properties of parametric estimators
62F35 Robustness and adaptive procedures (parametric inference)

References:

[1] ANDERSON, T. W. (1955). The integral of a sy mmetric unimodal function over a sy mmetric convex set and some probability inequalities. Proc. Amer. Math. Soc. 6 170-176. JSTOR: · Zbl 0066.37402 · doi:10.2307/2032333
[2] ANTOCH, J. and JANSSEN, P. (1989). Nonparametric regression M-quantiles. Statist. Probab. Lett. 8 355-362. · Zbl 0682.62022 · doi:10.1016/0167-7152(89)90044-8
[3] AZZALINI, A. (1981). A note on the estimation of a distribution function and quantiles by a kernel method. Biometrika 68 326-328. JSTOR: · doi:10.1093/biomet/68.1.326
[4] BASSETT, G. and KOENKER, R. (1978). Asy mptotic theory of least absolute error regression. J. Amer. Statist. Assoc. 73 618-622. · Zbl 0391.62046 · doi:10.2307/2286611
[5] BRECKLING, J. and CHAMBERS, R. (1988). M-quantiles. Biometrika 75 761-771. JSTOR: · Zbl 0653.62024 · doi:10.1093/biomet/75.4.761
[6] CHAUDHURI, P. (1992). Generalized regression quantiles: Forming a useful toolkit for robust linear regression. In L1-Statistical Analy sis and Related Methods (Y. Dodge, ed.) 169-185. North-Holland, Amsterdam.
[7] CHAUDHURI, P. (1996). On a geometric notion of quantiles for multivariate data. J. Amer. Statist. Assoc. 91 862-872. JSTOR: · Zbl 0869.62040 · doi:10.2307/2291681
[8] CHENG, C. and PARZEN, E. (1997). Unified estimators of smooth quantile and quantile density functions. J. Statist. Plann. Inference 59 291-307. · Zbl 0900.62209 · doi:10.1016/S0378-3758(96)00110-3
[9] EFRON, B. (1991). Regression percentiles using asy mmetric squared error loss. Statist. Sinica 1 93-125. · Zbl 0822.62054
[10] FALK, M. (1984). Relative deficiency of kernel ty pe estimators of quantiles. Ann. Statist. 12 261-268. · Zbl 0533.62040 · doi:10.1214/aos/1176346405
[11] FALK, M. and REISS, R.-D. (1989). Weak convergence of smoothed and nonsmoothed bootstrap quantile estimates. Ann. Probab. 17 362-371. · Zbl 0684.62036 · doi:10.1214/aop/1176991515
[12] FELLER, W. (1966). An Introduction to Probability Theory and Its Applications 2. Wiley, New York. · Zbl 0138.10207
[13] HAMPEL, F. R., RONCHETTI, E. M., ROUSSEEUW, P. J. and STAHEL, W. A. (1986). Robust Statistics: The Approach Based on Influence Functions. Wiley, New York. · Zbl 0593.62027
[14] HUBER, P. J. (1964). Robust estimation of a location parameter. Ann. Math. Statist. 35 73-101. · Zbl 0136.39805 · doi:10.1214/aoms/1177703732
[15] HUBER, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions. Proc. Fifth Berkeley Sy mp. Math. Statist. Probab. 1 221-233. Univ. California Press, Berkeley. · Zbl 0212.21504
[16] HUBER, P. J. (1981). Robust Statistics. Wiley, New York. · Zbl 0536.62025
[17] JONES, M. C. (1994). Expectiles and M-quantiles are quantiles. Statist. Probab. Lett. 20 149-153. · Zbl 0801.62012 · doi:10.1016/0167-7152(94)90031-0
[18] KAIGH, W. D. and CHENG, C. (1991). Subsampling quantile estimators and uniformity criteria. Comm. Statist. Theory Methods 20 539-560. · Zbl 0747.62032 · doi:10.1080/03610929108830514
[19] KEMPERMAN, J. H. B. (1987). The median for a finite measure on a Banach space. In Statistical Data Analy sis Based on the L1-Norm and Related Methods (Y. Dodge, ed.) 217-230. North-Holland, Amsterdam.
[20] KOLTCHINSKII, V. I. (1997). M-estimation, convexity and quantiles. Ann. Statist. 25 435-477. · Zbl 0878.62037 · doi:10.1214/aos/1031833659
[21] KOZEK, A. S. (2001). On M-estimators and normal quantiles. Available at http://laurel.ocs. mq.edu.au/ akozek/rqp.pdf. URL:
[22] KOZEK, A. S. and PAWLAK, M. (2002). Distribution-free consistency of kernel nonparametric M-estimators. Statist. Probab. Lett. 58 343-353. · Zbl 1092.62521 · doi:10.1016/S0167-7152(02)00106-2
[23] MACK, Y. P. (1987). Bahadur’s representation of sample quantiles based on smoothed estimates of a distribution function. Probab. Math. Statist. 8 183-189. · Zbl 0659.62056
[24] MILASEVIC, P. and DUCHARME, G. R. (1987). Uniqueness of the spatial median. Ann. Statist. 15 1332-1333. · Zbl 0631.62058 · doi:10.1214/aos/1176350511
[25] NADARAy A, È. (1964). Some new estimates for distribution functions. Theory Probab. Appl. 9 497-500.
[26] NEWEY, W. K. and POWELL, J. L. (1987). Asy mmetric least squares estimation and testing. Econometrica 55 819-847. JSTOR: · Zbl 0625.62047 · doi:10.2307/1911031
[27] PARZEN, E. (1979). Nonparametric statistical data modeling (with discussion). J. Amer. Statist. Assoc. 74 105-131. · Zbl 0407.62001 · doi:10.2307/2286734
[28] PFANZAGL, J. (1976). Investigating the quantile of an unknown distribution. In Contributions to Applied Statistics (W. J. Ziegler, ed.) 111-126. Birkhäuser, Basel. · Zbl 0332.62023
[29] RALESCU, S. S. (1992). Asy mptotic deviations between perturbed empirical and quantile processes. J. Statist. Plann. Inference 32 243-258. · Zbl 0755.60024 · doi:10.1016/0378-3758(92)90050-3
[30] REISS, R.-D. (1989). Approximate Distributions of Order Statistics. Springer, New York. · Zbl 0682.62009
[31] VAN DER VAART, A. (1994). Weak convergence of smoothed empirical processes. Scand. J. Statist. 21 501-504. · Zbl 0809.62040
[32] VON MISES, R. (1947). On the asy mptotic distribution of differentiable statistical functions. Ann. Math. Statist. 18 309-348. · Zbl 0037.08401 · doi:10.1214/aoms/1177730385
[33] YUKICH, J. E. (1992). Weak convergence of smoothed empirical processes. Scand. J. Statist. 19 271-279. · Zbl 0756.60026
[34] Sy DNEY, NSW 2109 AUSTRALIA E-MAIL: akozek@efs.mq.edu.au
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.