×

Rates of convergence of posterior distributions. (English) Zbl 1041.62022

Summary: We compute the rate at which the posterior distribution concentrates around the true parameter value. The spaces we work in are quite general and include infinite-dimensional cases. The rates are driven by two quantities: the size of the space, as measured by bracketing entropy, and the degree to which the prior concentrates in a small ball around the true parameter. We consider two examples.

MSC:

62F15 Bayesian inference
62E20 Asymptotic distribution theory in statistics
62G20 Asymptotic properties of nonparametric inference
Full Text: DOI

References:

[1] Barron, A. (1988). The exponential convergence of posterior probabilities with implications for Bayes estimators of density functions. Technical Report 7, Dept. Statistics, Univ. Illinois, Champaign.
[2] Barron, A., Schervish, M. and Wasserman, L. (1999). The consistency of posterior distributions in nonparametric problems. Ann. Statist. 27 536-561. · Zbl 0980.62039 · doi:10.1214/aos/1018031206
[3] Barron, A. and Yang, Y. (1998). Anasymptotic property of model selectioncriteria. IEEE Trans. Inform. Theory 44 95-116. · Zbl 0949.62041 · doi:10.1109/18.650993
[4] Barron, A., Birgé, L. and Massart, P. (1999). Risk bounds for model selection via penalization. Probab. Theory Related Fields 113 301-413. · Zbl 0946.62036 · doi:10.1007/s004400050210
[5] Berger, J. O. (1986). Discussion on the consistency of Bayes estimates (with discussion). Ann. Statist. 14 1-67. · Zbl 0595.62022 · doi:10.1214/aos/1176349830
[6] Birman, M. S. and Solomjak, M. Z. (1967). Piecewise-polynomial approximation of functions of the classes Wp. Mat. Sbornik 73 295-317.
[7] Brown, L. and Low, M. (1996). Asymptotic equivalence of non-parametric regression and white noise model. Ann. Statist. 24 2384-2398. · Zbl 0867.62022 · doi:10.1214/aos/1032181159
[8] Cox, D. D. (1993). An analysis of Bayesian inference for non-parametric regression. Ann. Statist. 21 903-924. · Zbl 0778.62003 · doi:10.1214/aos/1176349157
[9] Dembo, D., Mayer-Wolf, E. and Zeitouni, O. (1995). Exact behavior of Gaussianseminorms. Statist. Probab. Lett. 23 275-280. · Zbl 0830.60030 · doi:10.1016/0167-7152(94)00125-R
[10] Dey, D., M üller, P. and Sinha, D. (1998). Practical Nonparametric and Semiparametric Bayesian Statistics. Springer, New York. · Zbl 0893.00018 · doi:10.1007/978-1-4612-1732-9
[11] Diaconis, P. and Freedman, D. (1986). On the consistency of Bayes estimates (with discussion). Ann. Statist. 14 1-67. · Zbl 0595.62022 · doi:10.1214/aos/1176349830
[12] Diaconis, P. and Freedman, D. (1993). Non-parametric binary regression: A Bayesian approach. Ann. Statist. 21 2108-2137. Diaconis, P. and Freedman, D. (1997a). On the Bernstein-von Mises Theorem with infinite dimensional parameters. Unpublished manuscript. Diaconis, P. and Freedman, D. (1997b). Consistency of Bayes estimates for nonparametric regression: A review. In Festschrift for Lucien Le Cam (D. Pollard, E. Torgersenand G. Yang, eds.) Springer, New York. · Zbl 0797.62031 · doi:10.1214/aos/1176349413
[13] Diaconis, P. and Freedman, D. (1998). Consistency of Bayes estimates for nonparametric regression: normal theory. Bernoulli 4 411-444. · Zbl 1037.62031 · doi:10.2307/3318659
[14] Doob, J. L. (1948). Applicationof the theory of martingales. Coll. Int. du C. N. R. S. Paris 22-28. · Zbl 0041.45101
[15] Freedman, D. (1963). Onthe asymptotic behavior of Bayes estimates inthe discrete case I. Ann. Math. Statist. 34 1386-1403. · Zbl 0137.12603 · doi:10.1214/aoms/1177703871
[16] Freedman, D. (1999). On the Bernstein-Von Mises theorem with infinite dimensional parameters. Ann. Statist. 27. · Zbl 0957.62002
[17] Ghosal, S., Ghosh, J. K. and Ramamoorthi, R. V. (1997). Non-informative priors via sieves and packing numbers. In Advances in Statistical Decision Theory and Applications (S. Panchapakesan and N. Balakrishnan, eds.) 119-132. Birkhäuser, Boston. Ghosal, S., Ghosh, J. K. and Ramamoorthi, R.V. (1999a). Consistency issues in Bayesian nonparametrics. In Asymptotics, Nonparametrics and Time Series: A Tribute to Madan Lal Puri (S. Ghosh, ed.) 639-667. Dekker, New York Ghosal, S., Ghosh, J. K. and Ramamoorthi, R.V. (1999b). Posterior consistency of Dirichlet mixtures in density estimation. Ann. Statist. 27 143-158. · Zbl 0904.62007
[18] Ghosal, S., Ghosh, J. K. and Van Der Vaart, A. (1998). Convergence rates of posterior distributions. Technical report, Free Univ. Amsterdam. Grenander U. (1981) Abstract Inference. Wiley, New York. · Zbl 1105.62315
[19] Kuo, H. H. (1975). Gaussian Measures on Banach Spaces. Lecture Notes in Math. 463. Springer, Berlin. · Zbl 0306.28010 · doi:10.1007/BFb0082007
[20] Shen, X. (1995). Onthe properties of Bayes procedures ingeneral parameter spaces. Technical report, Ohio State Univ.
[21] Shen, X. and Wong, W. H. (1994). Convergence rate of sieve estimates. Ann. Statist. 22 580-615. · Zbl 0805.62008 · doi:10.1214/aos/1176325486
[22] Stone, C. (1982). Optimal global rates of convergence for non-parametric regression. Ann. Statist. 10 1040-1053. · Zbl 0511.62048 · doi:10.1214/aos/1176345969
[23] Schwartz, L. (1965). OnBayes’ procedures. Z. Wahrsch. Verw. Gebiete 4 10-26. · Zbl 0158.17606 · doi:10.1007/BF00535479
[24] Triebel, H. (1983). Theory of Function Spaces. Birkhäuser, Boston. · Zbl 0546.46027
[25] van de Geer, S. (2000). Empirical Processes in M-Estimation. Cambridge Univ. Press. · Zbl 0953.62049
[26] Wasserman, L. (1998). Asymptotic properties of nonparametric Bayesian procedures. In Practical Nonparametric and Semiparametric Bayesian Statistics (D. Dey, P. M üller and D. Sinha, eds.) 293-304. Springer, New York. · Zbl 0918.62045
[27] Wong, W. H. and Shen, X. (1995). A probability inequality for the likelihood surface and convergence rate of the maximum likelihood estimate. Ann. Statist. 23 339-362. · Zbl 0829.62002 · doi:10.1214/aos/1176324524
[28] Zeidler, E. (1990). Nonlinear Functional Analysis and its Applications II/A. Springer, New York. · Zbl 0684.47028
[29] Zhao, L. (1993). Frequentist and Bayesian aspects of some nonparametric estimation. Ph.D. dissertation, Cornell Univ.
[30] Zhao, L. (1998). A hierarchical Bayesian approach in nonparametric function estimation. Technical report, Dept. Statistics, Univ. Pennsylvania.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.