×

Locally asymptotically optimal designs for testing in logistic regression. (English) Zbl 1041.62063

Summary: Design measures maximizing local power of asymptotically uniformly most powerful (AUMP) tests about the value of logit \(P\) outside the observation space are characterized.

MSC:

62K05 Optimal statistical designs
62F35 Robustness and adaptive procedures (parametric inference)
62J12 Generalized linear models (logistic models)
62F03 Parametric hypothesis testing
Full Text: DOI

References:

[1] Barrodale, I. and Phillips, C. (1975). ALGORITHM 495. Solution of an overdetermined system of linear equations in the Chebyshev norm. ACM Trans. Math. Software 1 264-270. · Zbl 0309.65015 · doi:10.1145/355644.355651
[2] Chaloner, K. and Verdinelli, I. (1995). Bayesian experimental design: a review. Statist. Science 10 273-304. · Zbl 0955.62617 · doi:10.1214/ss/1177009939
[3] Choi, S., Hall, W. J. and Schick, A. (1996). Asymptotically uniformly most powerful tests in parametric and semiparametric models. Ann. Statist. 24 841-861. · Zbl 0860.62020 · doi:10.1214/aos/1032894469
[4] Dette, H. and Sahm, M. (1997). Standardized optimal designs for binary response experiments. South African Statist. J. 31 271-298. · Zbl 0901.62091
[5] Heiligers, B. (1996). Computing E-optimal polynomial regression designs. J. Statist. Plann. Inference 55 219-233. · Zbl 1076.62539 · doi:10.1016/0378-3758(95)00190-5
[6] Hoel, P. G. and Jennrich, R. I. (1979). Optimal designs for dose response experiments in cancer research. Biometrika 66 307-316. Karlin, S. and Studden, W. J. (1966a). Tchebycheff Systems with Applications in Analysis and Statistics. Interscience, New York. JSTOR: · Zbl 0406.62079 · doi:10.1093/biomet/66.2.307
[7] Spruill, M. C. (1987). Optimal extrapolation of derivatives. Metrika 34 45-60. · Zbl 0608.62088 · doi:10.1007/BF02613129
[8] Spruill, M. C. (1984). Optimal designs for minimax extrapolation. J. Multivariate Anal. 15 52-62. · Zbl 0598.62085 · doi:10.1016/0047-259X(84)90066-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.