×

Uniform convergence of sample second moments of families of time series arrays. (English) Zbl 1041.62073

Summary: We consider abstractly defined time series arrays \(y_t(T),\;1\leq t\leq T\), requiring only that their sample lagged second moments converge and that their end values \(y_{1+j}(T)\) and \(y_{T-j}(T)\) be of order less than \(T^{1/2}\) for each \(j\geq0\). We show that, under quite general assumptions, various types of arrays that arise naturally in time series analysis have these properties, including regression residuals from a time series regression, seasonal adjustments and infinite variance processes rescaled by their sample standard deviation.
We establish a useful uniform convergence result, namely that these properties are preserved in a uniform way when relatively compact sets of absolutely summable filters are applied to the arrays. This result serves as the foundation for the proof, in our companion paper, J. Econom. 118, 151–187 (2004; Zbl 1033.62092), of the consistency of parameter estimates specified to minimize the sample mean squared multistep-ahead forecast error when invertible short-memory models are fit to (short- or long-memory) time series or time series arrays.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62E20 Asymptotic distribution theory in statistics
60F15 Strong limit theorems

Citations:

Zbl 1033.62092
Full Text: DOI

References:

[1] Bloomfield, P. (1973). An exponential model for the spectrum of a scalar time series. Biometrika 60 217-226. JSTOR: · Zbl 0261.62074 · doi:10.1093/biomet/60.2.217
[2] Burman, J. P. (1980). Seasonal adjustment by signal extraction. J. Roy. Statist. Soc. Ser. A 143 321-337. JSTOR: · Zbl 0461.62074 · doi:10.2307/2982132
[3] Chen, Z.-G. and Ni, J.-Y. (1989). Subset regression time series and its modeling procedures. J. Multivariate Anal. 31 266-288. · Zbl 0687.62073 · doi:10.1016/0047-259X(89)90067-5
[4] Cline, D. (1983). Infinite series of random variables with regularly varying tails. Technical Report 83-24, Institute of Applied Mathematics and Statistics, Univ. British Columbia.
[5] Dahlhaus, R. (1997). Fittingtime series models to nonstationary processes. Ann. Statist. 25 1-37. · Zbl 0871.62080 · doi:10.1214/aos/1034276620
[6] Davis, R. A. and Resnick, S. (1985). Limit theory for movingaverages of random variables with regularly varying tail probabilities. Ann. Probab. 13 179-195. · Zbl 0562.60026 · doi:10.1214/aop/1176993074
[7] Dunford, N. and Schwartz, J. T. (1957). Linear Operators, Part I. Wiley, New York. · Zbl 0635.47001
[8] Feller, W. (1966). An Introduction to Probability Theory and Its Applications 2. Wiley, New York. · Zbl 0138.10207
[9] Findley, D. F. (1983). On the use of multiple models for multi-period forecasting. Proc. Business and Economic Statistics Section 528-531. Amer. Statist. Assoc., Alexandria, VA.
[10] Findley, D. F. (1991). Convergence of finite multistep predictors from incorrect models and its role in model selection. Note Mat. 11 145-155. · Zbl 0792.62085
[11] Findley, D. F., Monsell, B. C., Bell, W. R., Otto, M. C. and Chen, B.-C. (1998). New capabilities and methods of the X-12-ARIMA seasonal adjustment program (with discussion). J. Bus. Econom. Statist. 16 127-177.
[12] Findley, D. F., P ötscher, B. M. and Wei, C. Z. (2000). Modelingof time series arrays by multistep prediction or likelihood methods. J. Econometrics.
[13] Findley, D. F. and Wei, C.-Z. (1993). Moment bounds for derivingtime series CLT’s and model selection procedures. Statist. Sinica 3 453-480. · Zbl 0822.62074
[14] Gleser, L. J. (1966). Correction to ”On the asymptotic theory of fixed-size sequential confidence bounds for linear regression parameters.” Ann. Math. Statist. 37 1053-1054. · Zbl 0136.39501 · doi:10.1214/aoms/1177699388
[15] Hannan, E. J. (1970). Multiple Time Series. Wiley, New York. · Zbl 0211.49804
[16] Hannan, E. J. (1978). Rates of convergence for time series regression. Adv. Appl. Probab. 10 740-743. · Zbl 0394.62068 · doi:10.2307/1426656
[17] Lai, T. L. and Wei, C.-Z. (1983). Lacunary systems and generalized linear processes. Stochastic Proces. Appl. 14 187-199. · Zbl 0495.60041 · doi:10.1016/0304-4149(83)90071-6
[18] Parzen, E. (1962). Spectral analysis of asymptotically stationary time series. Bull. Inst. Internat. Statist. 39 87-103. · Zbl 0122.37201
[19] Phillips, P. C. B. and Solo, V. (1992). Asymptotics for linear processes. Ann. Statist. 20 971-1001. · Zbl 0759.60021 · doi:10.1214/aos/1176348666
[20] P ötscher, B. M. (1987). Convergence results for maximum likelihood type estimators in multivariable ARMA models. J. Multivariate Anal. 21 29-52. · Zbl 0626.62089 · doi:10.1016/0047-259X(87)90097-2
[21] P ötscher, B. M. (1998). Solution to Problem 97.4.2: Asymptotic properties of the least-squares estimator of the variance in a linear model. Econometric Theory 14 527-533.
[22] P ötscher, B. M. and Prucha, I. R. (1997). Dynamic Nonlinear Econometric Models: Asymptotic Theory. Springer, Berlin. · Zbl 0923.62121
[23] Schmidt, W. H. (1976). Strongconsistency of variance estimation and asymptotic theory for tests of the linear hypothesis in multivariate linear models. Statistics 7 701-705. · Zbl 0352.62052
[24] Stout, W. F. (1974). Almost Sure Convergence. Academic Press, New York. · Zbl 0321.60022
[25] Stulajter, F. (1991). Consistency of linear and quadratic least squares estimators in regression models with covariance stationary errors. Appl. Math. 36 149-155. Tiao, G. C. and Xu, D. (1993) Robustness of maximum likelihood estimates for multistep predictions: the exponential smoothingcase. Biometrika 80 623-641. · Zbl 0727.62087
[26] Zygmund, A. (1968). Trigonometric Series, Vols. I and II. Cambridge Univ. Press. · Zbl 0157.38204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.