Luca, Florian; Stănică, Pantelimon Products of factorials modulo \(p\). (English) Zbl 1042.11002 Colloq. Math. 96, No. 2, 191-205 (2003). Let \(P_{s,t}(p)=\{x_1!\dots x_t!\pmod{p} \mid x_i\geq1 \text{ for } i=1,\dots,t \text{ and } \sum_{i=1}^t x_i=s \}\). Two main results of the paper say: (1) Let \(\varepsilon>0\) be arbitrary. There exists a computable positive constant \(p_0(\varepsilon)\) such that whenever \(p>p_0(\varepsilon)\), then \(P_{s,t}(p)\) covers all the non-zero residue classes modulo \(p\) for all \(t\) and \(s\) such that \(t>p^\varepsilon\) and \(s-t>p^{1/2+\varepsilon}\); (2) If \(p\neq 5\) is a prime, then the set \(\bigcup_{t\geq2} P_{s,t}(p)\) covers all the non-zero residue classes modulo \(p\). Reviewer: Štefan Porubský (Praha) Cited in 2 ReviewsCited in 3 Documents MSC: 11A07 Congruences; primitive roots; residue systems 11N69 Distribution of integers in special residue classes 11B65 Binomial coefficients; factorials; \(q\)-identities Keywords:reduced residue classes modulo an odd prime; binomial coefficient PDF BibTeX XML Cite \textit{F. Luca} and \textit{P. Stănică}, Colloq. Math. 96, No. 2, 191--205 (2003; Zbl 1042.11002) Full Text: DOI arXiv OpenURL Online Encyclopedia of Integer Sequences: Number of distinct residues of generalized Catalan number 1/((n^2-1)*k + 1)*binomial(n^2*k, k) modulo n^2 as k runs through the positive integers.