×

Computing the Hilbert class field of real quadratic fields. (English) Zbl 1042.11075

Summary: Using the units appearing in Stark’s conjectures on the values of \(L\)-functions at \(s=0\), we give a complete algorithm for computing an explicit generator of the Hilbert class field of a real quadratic field.

MSC:

11Y40 Algebraic number theory computations
11R37 Class field theory
11R42 Zeta functions and \(L\)-functions of number fields
11Y35 Analytic computations

Software:

PARI/GP
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Eric Bach and Jonathan Sorenson, Explicit bounds for primes in residue classes, Math. Comp. 65 (1996), no. 216, 1717 – 1735. · Zbl 0853.11077
[2] C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier, User Guide to PARI/GP version 2.0.1, 1997
[3] Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. · Zbl 0786.11071
[4] Henri Cohen and Francisco Diaz y Diaz, A polynomial reduction algorithm, Sém. Théor. Nombres Bordeaux (2) 3 (1991), no. 2, 351 – 360 (English, with French summary). · Zbl 0758.11053
[5] H. Cohen, F. Diaz y Diaz, M. Olivier, Algorithmic Techniques for Relative Extensions of Number Fields, preprint A2X (1997)
[6] H. Cohen, F. Diaz y Diaz, and M. Olivier, Computing ray class groups, conductors and discriminants, Math. Comp. 67 (1998), no. 222, 773 – 795. · Zbl 0929.11064
[7] Gary Cornell and Michael Rosen, A note on the splitting of the Hilbert class field, J. Number Theory 28 (1988), no. 2, 152 – 158. · Zbl 0633.12003
[8] D. Dummit, B. Tangedal, Computing the Leading Term of an Abelian \(L\)-function, ANTS III , Lecture Notes in Computer Sci. 1423 (1998), p.400-411 · Zbl 0918.11059
[9] C. Fieker, Computing Class Fields via the Artin Map, preprint, 1997 · Zbl 0982.11074
[10] Eduardo Friedman, Hecke’s integral formula, Séminaire de Théorie des Nombres, 1987 – 1988 (Talence, 1987 – 1988) Univ. Bordeaux I, Talence, 198?, pp. Exp. No. 5, 23. · Zbl 0697.12010
[11] Makoto Ishida, The genus fields of algebraic number fields, Lecture Notes in Mathematics, Vol. 555, Springer-Verlag, Berlin-New York, 1976. · Zbl 0353.12001
[12] Jürgen Klüners and Michael Pohst, On computing subfields, J. Symbolic Comput. 24 (1997), no. 3-4, 385 – 397. Computational algebra and number theory (London, 1993). · Zbl 0886.11072
[13] J. Martinet, Character theory and Artin \?-functions, Algebraic number fields: \?-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) Academic Press, London, 1977, pp. 1 – 87.
[14] J. Neukirch, Algebraische Zahlentheorie, Springer-Verlag, Berlin, 1992 · Zbl 0747.11001
[15] M. Daberkow, M. Pohst, Computations with Relative Extensions of Number Fields with an Application to the Construction of Hilbert Class Fields, Proc. ISAAC’95, ACM Press, New-York 1995, 68-76 · Zbl 0930.11089
[16] M. Pohst and H. Zassenhaus, Algorithmic algebraic number theory, Encyclopedia of Mathematics and its Applications, vol. 30, Cambridge University Press, Cambridge, 1989. · Zbl 0685.12001
[17] X.-F. Roblot, Stark’s Conjectures and Hilbert’s Twelfth Problem, preprint; Algorithmes de Factorisation dans les Extensions Relatives et Applications de la Conjecture de Stark à la Construction des Corps de Classes de Rayon, Thesis, Université Bordeaux I (1997)
[18] Reinhard Schertz, Problèmes de construction en multiplication complexe, Sém. Théor. Nombres Bordeaux (2) 4 (1992), no. 2, 239 – 262 (French). · Zbl 0797.11083
[19] R. R. Sharma and Bahman Zohuri, A general method for an accurate evaluation of exponential integrals \?\(_{1}\)(\?),\?>0, J. Computational Phys. 25 (1977), no. 2, 199 – 204. · Zbl 0401.65009
[20] I.N. Sneddon, The Use of Integral Transforms, Mc Graw-Hill, New York, 1972 · Zbl 0237.44001
[21] H. M. Stark, Values of \?-functions at \?=1. I. \?-functions for quadratic forms., Advances in Math. 7 (1971), 301 – 343 (1971). , https://doi.org/10.1016/S0001-8708(71)80009-9 H. M. Stark, \?-functions at \?=1. II. Artin \?-functions with rational characters, Advances in Math. 17 (1975), no. 1, 60 – 92. , https://doi.org/10.1016/0001-8708(75)90087-0 H. M. Stark, \?-functions at \?=1. III. Totally real fields and Hilbert’s twelfth problem, Advances in Math. 22 (1976), no. 1, 64 – 84. , https://doi.org/10.1016/0001-8708(76)90138-9 Harold M. Stark, \?-functions at \?=1. IV. First derivatives at \?=0, Adv. in Math. 35 (1980), no. 3, 197 – 235. · Zbl 0475.12018
[22] John Tate, Les conjectures de Stark sur les fonctions \? d’Artin en \?=0, Progress in Mathematics, vol. 47, Birkhäuser Boston, Inc., Boston, MA, 1984 (French). Lecture notes edited by Dominique Bernardi and Norbert Schappacher. · Zbl 0545.12009
[23] Riho Terras, The determination of incomplete gamma functions through analytic integration, J. Comput. Phys. 31 (1979), no. 1, 146 – 151. · Zbl 0412.33002
[24] Riho Terras, Generalized exponential operators in the continuation of the confluent hypergeometric functions, J. Comput. Phys. 44 (1981), no. 1, 156 – 166. · Zbl 0474.65012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.