Hong, Chan Yong; Kim, Nam Kyun; Kwak, Tai Keun On skew Armendariz rings. (English) Zbl 1042.16014 Commun. Algebra 31, No. 1, 103-122 (2003). Throughout the paper \(R\) denotes an associative ring with identity. For a ring endomorphism \(\alpha\colon R\to R\), the skew polynomial ring \(R[x;\alpha]\) of \(R\) is the ring obtained by giving the polynomial ring over \(R\) the new multiplication \(xr=\alpha(r)x\) for all \(r\in R\). A Baer ring is a ring in which the right (left) annihilator of every non-empty subset is generated by an idempotent. The authors introduce the following notion: for an endomorphism \(\alpha\colon R\to R\), \(R\) is called a skew Armendariz ring with the endomorphism \(\alpha\) (simply, an \(\alpha\)-skew Armendariz ring) if for \(p=\sum_{i=0}^ma_ix^i\), and \(q=\sum_{j=0}^nb_jx^j\) in \(R[x;\alpha]\), \(pq=0\) implies \(a_i\alpha^i(b_j)=0\) for all \(0\leq i\leq m\), and \(0\leq j\leq n\). If \(\alpha\) is an endomorphism of \(R\) such that \(\alpha^t=I_R\) for some positive integer \(t\) and the identity endomorphism \(I_R\) of \(R\), then it is shown that \(R\) is \(\alpha\)-skew Armendariz if and only if \(R[x]\) is \(\alpha\)-skew Armendariz. Also, any domain \(R\) is \(\alpha\)-skew Armendariz for any endomorphism \(\alpha\) of \(R\). The authors prove that, for an \(\alpha\)-skew Armendariz ring \(R\), \(R[x;\alpha]\) is Abelian if and only if \(\alpha(e)=e\) for any \(e^2=e\in R\). Finally, if \(\alpha\) is an automorphism of \(R\) with \(\alpha(e)=e\) for any \(e^2=e\in R\) and \(R\) is an \(\alpha\)-skew Armendariz ring, then \(R\) is a Baer ring if and only if \(R[x;\alpha]\) is a Baer ring. Reviewer: Iuliu Crivei (Cluj-Napoca) Cited in 3 ReviewsCited in 63 Documents MSC: 16S36 Ordinary and skew polynomial rings and semigroup rings 16W20 Automorphisms and endomorphisms Keywords:Armendariz rings; skew polynomial rings; Baer rings; annihilators; idempotents; endomorphisms PDFBibTeX XMLCite \textit{C. Y. Hong} et al., Commun. Algebra 31, No. 1, 103--122 (2003; Zbl 1042.16014) Full Text: DOI References: [1] DOI: 10.1080/00927879808826274 · Zbl 0915.13001 · doi:10.1080/00927879808826274 [2] DOI: 10.1017/S1446788700029190 · Zbl 0292.16009 · doi:10.1017/S1446788700029190 [3] Goodearl K. R., An Introduction to Noncommutative Noetherian Rings (1989) · Zbl 0679.16001 [4] Hirano Y., Publ. Math. Debrecen. 54 pp 489– (1999) [5] DOI: 10.1016/S0022-4049(99)00020-1 · Zbl 0982.16021 · doi:10.1016/S0022-4049(99)00020-1 [6] Kaplansky I., Rings of Operators (1968) · Zbl 0174.18503 [7] DOI: 10.1006/jabr.1999.8017 · Zbl 0957.16018 · doi:10.1006/jabr.1999.8017 [8] Krempa J., Algebra Colloq. 3 pp 289– (1996) [9] DOI: 10.3792/pjaa.73.14 · Zbl 0960.16038 · doi:10.3792/pjaa.73.14 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.