Segata, J. Well-posedness for the fourth-order nonlinear Schrödinger-type equation related to the vortex filament. (English) Zbl 1042.35077 Differ. Integral Equ. 16, No. 7, 841-864 (2003). The author studies the initial value problem for a 1D nonlinear Schrödinger-type equation with variable coefficients. He proves time-local well-posedness in the Sololev space \(H^s(\mathbb{R})\) for \(0.5\leq s\). Reviewer: Igor Andrianov (Köln) Cited in 1 ReviewCited in 26 Documents MSC: 35Q55 NLS equations (nonlinear Schrödinger equations) 76D17 Viscous vortex flows 35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs Keywords:nonlinear Schrödinger-type equation; initial value problem; time-local well-posedness PDF BibTeX XML Cite \textit{J. Segata}, Differ. Integral Equ. 16, No. 7, 841--864 (2003; Zbl 1042.35077) OpenURL