×

Periodic and subharmonic solutions of second-order Hamiltonian systems. (English) Zbl 1042.37047

Summary: Some solvability conditions of periodic solutions and subharmonic solutions are obtained for a class of new superquadratic non-autonomous second-order Hamiltonian systems by the minimax methods in critical point theory.

MSC:

37J45 Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods (MSC2010)
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
49J35 Existence of solutions for minimax problems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Rabinowitz, P.H., Periodic solutions of Hamiltonian systems, Comm. pure appl. math., 31, 157-184, (1978) · Zbl 0358.70014
[2] Long, Y.M., Multiple solutions of perturbed superquadratic second order Hamiltonian systems, Trans. amer. math. soc., 311, 749-780, (1989) · Zbl 0676.34026
[3] Li, S.; Willem, M., Applications of local linking to critical point theory, J. math. anal. appl., 189, 6-32, (1995) · Zbl 0820.58012
[4] Benci, V., Some critical point theorems and applications, Comm. pure appl. math., 33, 147-172, (1980) · Zbl 0472.58009
[5] Fei, G., On periodic solutions of superquadratic Hamiltonian systems, Electron. J. differential equations, 2002, 1-12, (2002) · Zbl 0999.37039
[6] Rabinowitz, P.H., On subharmonic solutions of superquadratic Hamiltonian systems, Comm. pure appl. math., 33, 609-633, (1980) · Zbl 0425.34024
[7] Benci, V.; Rabinowitz, P.H., Critical point theorems for indefinite functionals, Invent. math., 52, 241-273, (1979) · Zbl 0465.49006
[8] Fonda, A.; Ramos, M., Large-amplitude subharmonic oscillations for scalar second order differential equations with asymmetric nonlinearities, J. differential equations, 109, 354-372, (1994) · Zbl 0798.34048
[9] Liu, J.Q.; Wang, Z.Q., On subharmonics with minimal periods of Hamiltonian systems, Nonlinear anal., 20, 803-821, (1993) · Zbl 0789.58030
[10] Mawhin, J.; Willem, M., Critical point theory and Hamiltonian systems, (1989), Springer-Verlag New York · Zbl 0676.58017
[11] Wang, Q.; Wang, Z.Q.; Shi, J.Y., Subharmonic oscillations with prescribed minimal period for a class of Hamiltonian systems, Nonlinear anal., 28, 1273-1282, (1997) · Zbl 0872.34022
[12] Jiang, M.Y., Subharmonic solutions of second order subquadratic Hamiltonian systems with potential changing sign, J. math. anal. appl., 244, 291-303, (2000) · Zbl 0982.37064
[13] Cerami, G., An existence criterion for the critical points on unbounded manifolds, Istit. lombardo accad. sci. lett. rend. A, 112, 332-336, (1978), (in Italian) · Zbl 0436.58006
[14] Bartolo, P.; Benci, V.; Fortunato, D., Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonlinear anal., 7, 241-273, (1983) · Zbl 0522.58012
[15] Rabinowitz, P.H., Minimax methods in critical point theory with applications to differential equations, CBMS reg. conf. ser. in math., vol. 65, (1986), American Mathematical Society Providence, RI · Zbl 0609.58002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.