Carro, María J.; Nikolova, Ludmila Some extensions of the Marcinkiewicz interpolation theorem in terms of modular inequalities. (English) Zbl 1042.46049 J. Math. Soc. Japan 55, No. 2, 385-394 (2003). Let \(({\mathcal M},\mu)\) and \(({\mathcal N},\nu)\) be two \(\sigma\)-finite measure spaces and let \(P\) and \(Q\) two modular functions (i.e., \(Q: [0,\infty)\to [0,\infty)\) is a nondecreasing right-continuous function with \(Q(0^+)= 0\)). For a given subadditive operator \(T: L^0(\mu)\to L^0(\nu)\), several mapping properties of interpolation type for which the modular inequality \[ \int_{\mathcal N} P(| Tf(x)|\,d\nu(x)\leq \int_{\mathcal M}Q(| f(x)|)\,d\mu(x) \] holds are studied and applied. These results generalize the classical Marcinkiewicz interpolation theorem. Reviewer: Joaquim Martín (Barcelona) Cited in 2 Documents MSC: 46M35 Abstract interpolation of topological vector spaces 26D15 Inequalities for sums, series and integrals 46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) Keywords:boundedness of operators; interpolation; modular inequalities PDF BibTeX XML Cite \textit{M. J. Carro} and \textit{L. Nikolova}, J. Math. Soc. Japan 55, No. 2, 385--394 (2003; Zbl 1042.46049) Full Text: DOI OpenURL