Kollross, Andreas A classification of hyperpolar and cohomogeneity one actions. (English) Zbl 1042.53034 Trans. Am. Math. Soc. 354, No. 2, 571-612 (2002). An isometric action of a compact Lie group on a Riemannian manifold is said to be hyperpolar if there exists a closed connected submanifold that is flat and meets all orbits orthogonally. Examples of hyperpolar actions are the adjoint action of a compact Lie group with a bi-invariant metric, isotropy actions of symmetric spaces and polar representations of compact Lie groups. In [E. Heintze, R. S. Palais, Ch. Terng, and G. Thorbergsson, Hyperpolar actions on symmetric spaces (1995; Zbl 0871.57035)] it was shown that cohomogeneity one actions, i.e. actions whose principal orbits have codimension one, on symmetric spaces of compact type are hyperpolar. The main result in this thorough article are the classification of hyperpolar and cohomogeneity one actions on the irreducible Riemannian symmetric spaces of the compact type (theorems A and B). In the first section of the article, the author gives all needed definitions and reviews various results in the subject which allow to reduce the classification of irreducible symmetric spaces to actions on simple compact Lie groups. In the second section the author finds those connected subgroups of \(G\times G\), \(G\) a compact simple Lie group, acting hyperpolary on \(G\) and maximal with this property. As a consequence of results in section 2 it follows that all hyperpolar actions that are not Hermann or \(\sigma\)-actions are of cohomogeneity one. In section 3, to complete the classification of cohomogeneity one actions on symmetric spaces, the author determines which Hermann or \(\sigma\)-actions are of cohomogeneity one. Reviewer: Isabel Dotti Miatello (Córdoba) Cited in 4 ReviewsCited in 86 Documents MSC: 53C35 Differential geometry of symmetric spaces 57S15 Compact Lie groups of differentiable transformations Keywords:hyperpolar actions; cohomogeneity one actions; symmetric spaces; compact Lie groups Citations:Zbl 0871.57035 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. · Zbl 0613.53001 [2] M. R. Bremner, R. V. Moody, and J. Patera, Tables of dominant weight multiplicities for representations of simple Lie algebras, Monographs and Textbooks in Pure and Applied Mathematics, vol. 90, Marcel Dekker, Inc., New York, 1985. · Zbl 0557.17001 [3] Lawrence Conlon, The topology of certain spaces of paths on a compact symmetric space, Trans. Amer. Math. Soc. 112 (1964), 228 – 248. · Zbl 0146.19602 [4] Lawrence Conlon, Remarks on commuting involutions, Proc. Amer. Math. Soc. 22 (1969), 255 – 257. · Zbl 0179.05002 [5] Jiri Dadok, Polar coordinates induced by actions of compact Lie groups, Trans. Amer. Math. Soc. 288 (1985), no. 1, 125 – 137. · Zbl 0565.22010 [6] J. E. D’Atri, Certain isoparametric families of hypersurfaces in symmetric spaces, J. Differential Geom. 14 (1979), no. 1, 21 – 40 (1980). · Zbl 0459.53040 [7] Dynkin E.B.: Semisimple subalgebras of the semisimple Lie algebras, Amer. Math. Soc. Transl. Ser. 2, 6, 111-244 (1952) · Zbl 0048.01701 [8] Dynkin E.B.: The maximal subgroups of the classical groups, Amer. Math. Soc. Transl. Ser. 2, 6, 245-378 (1952) · Zbl 0077.03403 [9] Ernst Heintze and Xiaobo Liu, A splitting theorem for isoparametric submanifolds in Hilbert space, J. Differential Geom. 45 (1997), no. 2, 319 – 335. · Zbl 0874.58001 [10] Ernst Heintze, Richard S. Palais, Chuu-Lian Terng, and Gudlaugur Thorbergsson, Hyperpolar actions on symmetric spaces, Geometry, topology, & physics, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA, 1995, pp. 214 – 245. · Zbl 0871.57035 [11] E. Heintze, R. Palais, C.-L. Terng, and G. Thorbergsson, Hyperpolar actions and \?-flat homogeneous spaces, J. Reine Angew. Math. 454 (1994), 163 – 179. · Zbl 0804.53074 [12] Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. · Zbl 0451.53038 [13] Robert Hermann, Variational completeness for compact symmetric spaces, Proc. Amer. Math. Soc. 11 (1960), 544 – 546. · Zbl 0098.36603 [14] Wu-yi Hsiang and H. Blaine Lawson Jr., Minimal submanifolds of low cohomogeneity, J. Differential Geometry 5 (1971), 1 – 38. · Zbl 0219.53045 [15] Wu-chung Hsiang and Wu-yi Hsiang, Differentiable actions of compact connected classical groups. II, Ann. of Math. (2) 92 (1970), 189 – 223. · Zbl 0205.53902 · doi:10.2307/1970834 [16] Koichi Iwata, Compact transformation groups on rational cohomology Cayley projective planes, Tôhoku Math. J. (2) 33 (1981), no. 4, 429 – 442. · Zbl 0506.57024 · doi:10.2748/tmj/1178229347 [17] Klaus Jänich, Differenzierbare \?-Mannigfaltigkeiten, Lecture Notes in Mathematics, No 59, Springer-Verlag, Berlin-New York, 1968. · Zbl 0159.53701 [18] H. Blaine Lawson Jr. and Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989. · Zbl 0688.57001 [19] L. N. Mann, Gaps in the dimensions of transformation groups, Illinois J. Math. 10 (1966), 532 – 546. · Zbl 0142.21701 [20] Shingo Murakami, Exceptional simple Lie groups and related topics in recent differential geometry, Differential geometry and topology (Tianjin, 1986 – 87) Lecture Notes in Math., vol. 1369, Springer, Berlin, 1989, pp. 183 – 221. · Zbl 0701.22006 · doi:10.1007/BFb0087534 [21] Oniscik A.L.: Inclusion relations among transitive compact transformation groups, Amer. Math. Soc. Transl. Ser. 2, 50, 5-58 (1966) · Zbl 0207.33604 [22] Oniscik A.L.: Topology of transitive transformation groups, Johann Ambrosius Barth, Leipzig (1994) [23] Richard S. Palais and Chuu-Lian Terng, A general theory of canonical forms, Trans. Amer. Math. Soc. 300 (1987), no. 2, 771 – 789. · Zbl 0652.57023 [24] Richard S. Palais and Chuu-Lian Terng, Critical point theory and submanifold geometry, Lecture Notes in Mathematics, vol. 1353, Springer-Verlag, Berlin, 1988. · Zbl 0658.49001 [25] Podestà F., Thorbergsson, G. Polar actions on rank-one symmetric spaces, J. Differential Geom. 53, 131-175 (1999) CMP 2000:16 · Zbl 1040.53071 [26] Ryoichi Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495 – 506. · Zbl 0274.53062 [27] C.-L. Terng and G. Thorbergsson, Submanifold geometry in symmetric spaces, J. Differential Geom. 42 (1995), no. 3, 665 – 718. · Zbl 0845.53040 [28] Jacques Tits, Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen, Springer-Verlag, Berlin-New York, 1967 (German). · Zbl 0166.29703 [29] Wolf J. A.: Spaces of constant curvature, Publish or Perish, Wilmington, Delaware (1977) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.