×

Asymptotics and the theory of inference. (English) Zbl 1042.62022

From the paper: Asymptotic analysis has always been very useful for deriving distributions in statistics in cases where the exact distribution is unavailable. More importantly, asymptotic analysis can also provide insight into the inference process itself, suggesting what information is available and how this information may be extracted. The development of likelihood inference over the past twenty-some years provides an illustration of the interplay between techniques of approximation and statistical theory.
We consider the insight offered by asymptotic analysis for inference based on the likelihood function. This is an area that has seen considerable development in the past twenty years, largely based on asymptotic expansions and improved approximation. Section 2 reviews the main asymptotic results in likelihood inference and mentions a number of other applications of asymptotics to areas of statistics of current interest. In Section 3 we provide additional detail on a paraticular type of approximation, that of approximating \(p\)-values in tests of significance. We emphasize here recent work of Barndorff-Nielsen and colleagues and of Fraser and Reid and colleagues. In Section 4 we discuss the gap between the theoretical development and applications with special emphasis on reviewing recent work that is aimed at narrowing this gap, and outlining work still needed.

MSC:

62F12 Asymptotic properties of parametric estimators
62F05 Asymptotic properties of parametric tests
62-02 Research exposition (monographs, survey articles) pertaining to statistics
62E20 Asymptotic distribution theory in statistics

Software:

LISP-STAT; bootlib
Full Text: DOI

References:

[1] Amari, S.-I. (1985). Differential-Geometrical Methods in Statistics. Lecture Notes in Statist. 28 . Springer, New York. · Zbl 0559.62001
[2] Barndorff-Nielsen, O. E. (1980). Conditionality resolutions. Biometrika 67 293–310. · Zbl 0434.62005 · doi:10.1093/biomet/67.2.293
[3] Barndorff-Nielsen, O. E. (1983). On a formula for the distribution of the maximum likelihood estimator. Biometrika 70 343–365. · Zbl 0532.62006 · doi:10.1093/biomet/70.2.343
[4] Barndorff-Nielsen, O. E. (1986). Inference on full or partial parameters based on the standardized signed log likelihood ratio. Biometrika 73 307–322. · Zbl 0605.62020
[5] Barndorff-Nielsen, O. E. (1990). Approximate interval probabilities. J. Roy. Statist. Soc. Ser. B 52 485–496. · Zbl 0706.62013
[6] Barndorff-Nielsen, O. E. (1991). Modified signed log likelihood ratio. Biometrika 78 557–563. · Zbl 1192.62052 · doi:10.1093/biomet/78.3.557
[7] Barndorff-Nielsen, O. E. (1996). Two index asymptotics. In Frontiers in Pure and Applied Probability II (I. Melnikov, ed.) 9–20. TVP Science, Moscow. · Zbl 0899.62044
[8] Barndorff-Nielsen, O. E. and Chamberlin, S. (1991). An ancillary invariant modification of the signed log likelihood ratio. Scand. J. Statist. 18 341–352. · Zbl 0799.62006
[9] Barndorff-Nielsen, O. E. and Chamberlin, S. (1994). Stable and invariant adjusted directed likelihoods. Biometrika 81 485–499. · Zbl 0812.62030 · doi:10.1093/biomet/81.3.485
[10] Barndorff-Nielsen, O. E. and Cox, D. R. (1994). Inference and Asymptotics . Chapman and Hall, London. · Zbl 0826.62004
[11] Barndorff-Nielsen, O. E., Cox, D. R. and Reid, N. (1986). The role of differential geometry in statistical theory. Internat. Statist. Rev. 54 83–96. · Zbl 0587.62060 · doi:10.2307/1403260
[12] Barndorff-Nielsen, O. E. and Wood, A. T. A. (1998). On large deviations and choice of ancillary for \(p^*\) and \(r^*\). Bernoulli 4 35–63. · Zbl 0894.62026 · doi:10.2307/3318531
[13] Bellio, R. (1999). Likelihood asymptotics: Applications in biostatistics. Ph.D. thesis, Dept. Statistics, Univ. Padua, Italy.
[14] Bellio, R. (2003). Likelihood methods for controlled calibration. Scand. J. Statist. 30 339–353. · Zbl 1053.62032 · doi:10.1111/1467-9469.00334
[15] Bellio, R. and Brazzale, A. R. (2003). Higher-order asymptotics unleashed: Software design for nonlinear heteroscedastic regression. J. Comput. Graph. Statist. 12 682–697. · doi:10.1198/1061860032003
[16] Bellio, R., Jensen, J. E. and Seiden, P. (2000). Applications of likelihood asymptotics for nonlinear regression in herbicide bioassays. Biometrics 56 1204–1212. · Zbl 1060.62580 · doi:10.1111/j.0006-341X.2000.01204.x
[17] Bentkus, V., Götze, F. and van Zwet, W. R. (1997). An Edgeworth expansion for symmetric statistics. Ann. Statist. 25 851–896. · Zbl 0920.62016 · doi:10.1214/aos/1031833676
[18] Beran, J. (1994). Statistics for Long Memory Processes . Chapman and Hall, London. · Zbl 0869.60045
[19] Bickel, P. and Freedman, D. (1981). Some asymptotic theory for the bootstrap. Ann. Statist. 9 1196–1217. JSTOR: · Zbl 0449.62034 · doi:10.1214/aos/1176345637
[20] Bloznelis, M. and Götze, F. (2000). An Edgeworth expansion for finite-population \(U\)-statistics. Bernoulli 6 729–760. · Zbl 0982.62009 · doi:10.2307/3318517
[21] Box, G. E. P. and Cox, D. R. (1964). An analysis of transformations (with discussion). J. Roy. Statist. Soc. Ser. B 26 211–252. · Zbl 0156.40104
[22] Brazzale, A. (1999). Approximate conditional inference in logistic and loglinear models. J. Comp. Graph. Statist. 8 653–661.
[23] Brazzale, A. (2000). Practical small-sample parametric inference. Ph.D. thesis, Dept. Mathematics, Swiss Federal Institute of Technology, Lausanne.
[24] Butler, R. (2000). Reliabilities for feedback systems and their saddlepoint approximation. Statist. Sci. 15 279–298. · Zbl 1127.60314 · doi:10.1214/ss/1009212818
[25] Butler, R. (2001). First passage time distributions in semi-Markov processes and their saddlepoint approximation. In Data Analysis from Statistical Foundations : A Festschrift in Honour of the 75th Birthday of D. A. S. Fraser (A. K. M. E. Saleh, ed.). Nova Science, Commach, NY.
[26] Butler, R., Huzurbazar, S. and Booth, J. (1992a). Saddlepoint approximations for the generalized variance and Wilks’ statistic. Biometrika 79 157–169. · Zbl 0754.62036 · doi:10.1093/biomet/79.1.157
[27] Butler, R., Huzurbazar, S. and Booth, J. (1992b). Saddlepoint approximation in multivariate analysis for the Bartlett–Nanda–Pillai trace statistics. Biometrika 79 705–715. · Zbl 0764.62045 · doi:10.1093/biomet/79.4.705
[28] Butler, R., Huzurbazar, S. and Booth, J. (1993). Saddlepoint approximations for tests of block independence, sphericity and equal variances and covariances. J. Roy. Statist. Soc. Ser. B 55 171–183. · Zbl 0800.62087
[29] Cakmak, S., Fraser, D. A. S., McDunnough, P., Reid, N. and Yuan, X. (1998). Likelihood centered asymptotic model: Exponential and location model versions. J. Statist. Plann. Inference 66 211–222. · Zbl 0953.62017 · doi:10.1016/S0378-3758(97)00085-2
[30] Cheah, P. K., Fraser, D. A. S. and Reid, N. (1995). Adjustments to likelihood and densities: Calculating significance. J. Statist. Res. 29 1–13.
[31] Corcoran, S., Davison, A. C. and Spady, R. (1999). Reliable inference from empirical likelihood.
[32] Cox, D. R. (1972). Regression models and life tables (with discussion). J. Roy. Statist. Soc. Ser. B 34 187–220. · Zbl 0243.62041
[33] Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statistics. Chapman and Hall, London. · Zbl 0334.62003
[34] Cox, D. R. and Reid, N. (1987). Parameter orthogonality and approximate conditional inference (with discussion). J. Roy. Statist. Soc. Ser. B 49 1–39. · Zbl 0616.62006
[35] Davison, A. C. and Hinkley, D. V. (1997). Bootstrap Methods and Their Application . Cambridge Univ. Press. · Zbl 0886.62001
[36] Dawid, A. P. (1991). Fisherian inference in likelihood and prequential frames of reference (with discussion). J. Roy. Statist. Soc. Ser. B 53 79–109. · Zbl 0800.62028
[37] DiCiccio, T. J. and Efron, B. (1992). More accurate confidence intervals in exponential families. Biometrika 79 231–245. · Zbl 0752.62027 · doi:10.1093/biomet/79.2.231
[38] DiCiccio, T. J. and Efron, B. (1996). Bootstrap confidence intervals (with discussion). Statist. Sci. 11 189–228. · Zbl 0955.62574 · doi:10.1214/ss/1032280214
[39] DiCiccio, T. J., Field, C. A. and Fraser, D. A. S. (1990). Approximations of marginal tail probabilities and inference for scalar parameters. Biometrika 77 77–95. · Zbl 0692.62033 · doi:10.1093/biomet/77.1.77
[40] DiCiccio, T. J., Hall, P. and Romano, J. (1991). Empirical likelihood is Bartlett-correctable. Ann. Statist. 19 1053–1061. JSTOR: · Zbl 0725.62042 · doi:10.1214/aos/1176348137
[41] DiCiccio, T. J. and Martin, M. A. (1993). Simple modifications for signed roots of likelihood ratio statistics. J. Roy. Statist. Soc. Ser. B 55 305–316. · Zbl 0794.62014
[42] Dinges, H. (1986). Asymptotic normality and large deviations. In Proc. 10th Prague Conference on Information Theory , Statistical Decision Functions , and Random Processes. Academia, Prague. · Zbl 0714.60021
[43] Efron, B. (1993). Bayes and likelihood calculations from confidence intervals. Biometrika 80 3–26. · Zbl 0773.62021 · doi:10.1093/biomet/80.1.3
[44] Efron, B. and Hinkley, D. V. (1978). Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher information (with discussion). Biometrika 65 457–487. · Zbl 0401.62002 · doi:10.1093/biomet/65.3.457
[45] Fan, J. (1993). Local linear regression smoothers and their minimax efficiencies. Ann. Statist. 21 196–216. JSTOR: · Zbl 0773.62029 · doi:10.1214/aos/1176349022
[46] Fisher, R. A. (1920). A mathematical examination of the methods of determining the accuracy of an observation by the mean error, and by the mean square error. Monthly Notices Roy. Astronomical Soc. 80 758–770. [Reprinted (1950) in Contributions to Mathematical Statistics . Wiley, New York.]
[47] Fisher, R. A. (1934). Two new properties of mathematical likelihood. Proc. Roy. Soc. London Ser. A 144 285–307. · Zbl 0009.21902 · doi:10.1098/rspa.1934.0050
[48] Fraser, D. A. S. (1968). The Structure of Inference . Wiley, New York. · Zbl 0164.48703
[49] Fraser, D. A. S. (1988). Normed likelihood as saddlepoint approximation. J. Multivariate Anal. 27 181–193. · Zbl 0649.62016 · doi:10.1016/0047-259X(88)90124-8
[50] Fraser, D. A. S. (1990). Tail probabilities from observed likelihoods. Biometrika 77 65–76. · Zbl 0692.62032 · doi:10.1093/biomet/77.1.65
[51] Fraser, D. A. S. (1991). Statistical inference: Likelihood to significance. J. Amer. Statist. Assoc. 86 258–265. · Zbl 0734.62004 · doi:10.2307/2290557
[52] Fraser, D. A. S. and McDunnough, P. (1984). Further remarks on asymptotic normality of likelihood and conditional analyses. Canad. J. Statist. 12 183–190. · Zbl 0549.62014 · doi:10.2307/3314746
[53] Fraser, D. A. S. and Reid, N. (1993). Third order asymptotic models: Likelihood functions leading to accurate approximations for distribution functions. Statist. Sinica 3 67–82. · Zbl 0831.62016
[54] Fraser, D. A. S. and Reid, N. (1995). Ancillaries and third-order significance. Utilitas Math. 47 33–53. · Zbl 0829.62006
[55] Fraser, D. A. S. and Reid, N. (2002). Strong matching of frequentist and Bayesian parametric inference. J. Statist. Plann. Inference 103 263–285. · Zbl 1005.62005 · doi:10.1016/S0378-3758(01)00225-7
[56] Fraser, D. A. S., Reid, N. and Wu, J. (1999). A simple general formula for tail probabilities for frequentist and Bayesian inference. Biometrika 86 249–264. · Zbl 0932.62003 · doi:10.1093/biomet/86.2.249
[57] Fraser, D. A. S., Wong, A. and Wu, J. (1999). Regression analysis, nonlinear or nonnormal: Simple and accurate \(p\)-values from likelihood analysis. J. Amer. Statist. Assoc. 94 1286–1295. · Zbl 0998.62059 · doi:10.2307/2669942
[58] Freedman, D. L. (1999). On the Bernstein–von Mises theorem with infinite-dimensional parameters. Ann. Statist. 27 1119–1140. · Zbl 0957.62002
[59] Ghosh, M. and Mukerjee, R. (1998). Recent developments on probability matching priors. In Applied Statistical Science III (S. E. Ahmed, M. Ahsanullah and B. K. Sinha, eds.) 227–252. Nova Science, Commack, NY.
[60] Guolo, A. (2002). Second-order likelihood-based inference in mixed-effects models. Working paper 2002.11, Dept. Statistics, Univ. Padua, Italy.
[61] Hall, P. (1992). The Bootstrap and Edgeworth Expansion. Springer, New York. · Zbl 0744.62026
[62] Hastie, T. and Loader, C. (1993). Local regression: Automatic kernel carpentry (with discussion). Statist. Sci. 8 120–143.
[63] Hsu, J. (1995). Generalized Laplacian approximations in Bayesian inference. Canad. J. Statist. 23 399–410. · Zbl 0878.62021 · doi:10.2307/3315383
[64] Huzurbazar, A. V. (2000). Modelling and analysis of engineering systems data using flowgraph models. Technometrics 42 300–306.
[65] Ibragimov, I. A. and Has’minskii, R. Z. (1981). Statistical Estimation : Asymptotic Theory. Springer, New York. · Zbl 0467.62026
[66] Jensen, J. L. (1992). The modified signed likelihood statistic and saddlepoint approximations. Biometrika 79 693–703. · Zbl 0764.62021 · doi:10.1093/biomet/79.4.693
[67] Johnson, R. A. (1970). Asymptotic expansions associated with posterior distributions. Ann. Math. Statist. 41 851–864. · Zbl 0204.53002 · doi:10.1214/aoms/1177696963
[68] Kass, R., Tierney, L. J. and Kadane, J. (1988). Asymptotics in Bayesian computation. In Bayesian Statistics 3 (J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, eds.) 261–278. Clarendon Press, Oxford. · Zbl 0706.62035
[69] Kolassa, J. and Tanner, M. (1994). Approximate conditional inference in exponential families via the Gibbs sampler. J. Amer. Statist. Assoc. 89 697–702. · Zbl 0803.62013 · doi:10.2307/2290874
[70] Lehmann, E. L. and Casella, G. (1998). Theory of Point Estimation , 2nd ed. Wiley, New York. · Zbl 0916.62017
[71] Lugannani, R. and Rice, S. (1980). Saddlepoint approximation for the distribution of the sum of independent random variables. Adv. in Appl. Probab. 12 475–490. · Zbl 0425.60042 · doi:10.2307/1426607
[72] Lyons, B. and Peters, D. (2000). Applying Skovgaard’s modified directed likelihood statistic to mixed linear models. J. Statist. Comput. Simulation 65 225–242. · Zbl 1122.62306 · doi:10.1080/00949650008812000
[73] Mukerjee, R. and Reid, N. (2000). On the Bayesian approach for frequentist computations. Braz. J. Probab. Statist. 14 159–166. · Zbl 0983.62014
[74] Murphy, S. A. and van der Vaart, A. W. (2000). On profile likelihood (with discussion). J. Amer. Statist. Assoc. 95 449–485. · Zbl 0995.62033 · doi:10.2307/2669386
[75] Mykland, P. A. (1995). Martingale expansions and second-order inference. Ann. Statist. 23 707–731. JSTOR: · Zbl 0839.62083 · doi:10.1214/aos/1176324617
[76] Mykland, P. K. (2000). Bartlett identities and large deviations in likelihood theory. Ann. Statist. 27 1105–1117. · Zbl 0951.62014 · doi:10.1214/aos/1018031270
[77] Neyman, J. and Scott, E. L. (1948). Consistent estimates based on partially consistent observations. Econometrica 16 1–32. · Zbl 0034.07602 · doi:10.2307/1914288
[78] Nicolaou, A. (1993). Bayesian intervals with good frequentist behaviour in the presence of nuisance parameters. J. Roy. Statist. Soc. Ser. B 55 377–390. · Zbl 0785.62026
[79] Owen, A. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75 237–249. · Zbl 0641.62032 · doi:10.1093/biomet/75.2.237
[80] Owen, A. (2001). Empirical Likelihood . Chapman and Hall/CRC Press, Boca Raton, FL. · Zbl 0989.62019
[81] Peers, H. W. (1965). On confidence points and Bayesian probability points in the case of several parameters. J. Roy. Statist. Soc. Ser. B 27 9–16. · Zbl 0144.41403
[82] Pfanzagl, J. (1985). Asymptotic Expansions for General Statistical Models. Lecture Notes in Statist. 31 . Springer, New York. · Zbl 0578.62003
[83] Pierce, D. A. and Peters, D. L. (1992). Practical use of higher-order asymptotics for multiparameter exponential families (with discussion). J. Roy. Statist. Soc. Ser. B 54 701–737.
[84] Pierce, D. A. and Peters, D. L. (1994). Higher-order asymptotics and the likelihood principle: One-parameter models. Biometrika 81 1–10. · Zbl 0796.62006 · doi:10.1093/biomet/81.1.1
[85] Portnoy, S. L. (1984). Asymptotic behavior of \(M\)-estimators of \(p\) regression parameters when \(p^2/n\) is large. I. Consistency. Ann. Statist. 12 1298–1309. JSTOR: · Zbl 0584.62050 · doi:10.1214/aos/1176346793
[86] Portnoy, S. L. (1985). Asymptotic behavior of \(M\)-estimators of \(p\) regression parameters when \(p^2/n\) is large. II. Normal approximation. Ann. Statist. 13 1403–1417. JSTOR: · Zbl 0601.62026 · doi:10.1214/aos/1176349744
[87] Reid, N. (1988). Saddlepoint methods and statistical inference (with discussion). Statist. Sci. 3 213–238. · Zbl 0955.62541
[88] Reid, N. (1996). Likelihood and higher-order approximations to tail areas: A review and annotated bibliography. Canad. J. Statist. 24 141–166. · Zbl 0858.62011 · doi:10.2307/3315622
[89] Reid, N., Mukerjee, R. and Fraser, D. A. S. (2003). Some aspects of matching priors. In Mathematical Statistics and Applications : A Festschrift for Constance van Eeden (M. Moore, S. Froda and C. Léger, eds.) 31–44. IMS, Bethesda, MD.
[90] Rotnitzky, A., Cox, D. R., Bottai, M. and Robins, J. (2000). Likelihood based inference with a singular information matrix. Bernoulli 6 243–284. · Zbl 0976.62015 · doi:10.2307/3318576
[91] Sartori, N. (2003). Modified profile likelihoods in models with stratum nuisance parameters. Biometrika 90 533–549. · Zbl 1436.62086 · doi:10.1093/biomet/90.3.533
[92] Severini, T. A. (1999). An empirical adjustment to the likelihood ratio statistic. Biometrika 86 235–248. · Zbl 0943.62016 · doi:10.1093/biomet/86.2.235
[93] Severini, T. A. (2000). Likelihood Methods in Statistics. Oxford Univ. Press. · Zbl 0984.62002
[94] Singh, K. (1981). On the asymptotic accuracy of Efron’s bootstrap. Ann. Statist. 9 1187–1195. JSTOR: · Zbl 0494.62048 · doi:10.1214/aos/1176345636
[95] Skovgaard, I. M. (1989). A review of higher-order likelihood inference. Bull. Internat. Statist. Inst. 53 331–351.
[96] Skovgaard, I. M. (1990). On the density of minimum contrast estimators. Ann. Statist. 18 779–789. JSTOR: · Zbl 0709.62029 · doi:10.1214/aos/1176347625
[97] Skovgaard, I. M. (1996). An explicit large-deviation approximation to one-parameter tests. Bernoulli 2 145–165. · Zbl 1066.62508 · doi:10.2307/3318548
[98] Skovgaard, I. M. (2001). Likelihood asymptotics. Scand. J. Statist. 28 3–32. · Zbl 0965.62014 · doi:10.1111/1467-9469.00223
[99] Smith, R. L. (1985). Maximum likelihood estimation in a class of nonregular cases. Biometrika 72 67–90. · Zbl 0583.62026 · doi:10.1093/biomet/72.1.67
[100] Smith, R. L. (1989). A survey of nonregular problems. Bull. Internat. Statist. Inst. 53 353–372.
[101] Stigler, S. (1973). Studies in the history of probability and statistics. XXXII. Laplace, Fisher, and the discovery of the concept of sufficiency. Biometrika 60 439–445. · Zbl 0286.01010
[102] Stone, C. J. (1980). Optimal rates of convergence for nonparametric estimators. Ann. Statist. 8 1348–1360. JSTOR: · Zbl 0451.62033 · doi:10.1214/aos/1176345206
[103] Stone, C. J. (1982). Optimal global rates of convergence for nonparametric regression. Ann. Statist. 10 1040–1053. JSTOR: · Zbl 0511.62048 · doi:10.1214/aos/1176345969
[104] Sweeting, T. J. (1995). A framework for Bayesian and likelihood approximations in statistics. Biometrika 8 1–23. · Zbl 0829.62003 · doi:10.1093/biomet/82.1.1
[105] Sweeting, T. J. (2001). Coverage probability bias, objective Bayes and the likelihood principle. Biometrika 88 657–675. · Zbl 0985.62025 · doi:10.1093/biomet/88.3.657
[106] Tibshirani, R. J. (1989). Noninformative priors for one parameter of many. Biometrika 76 604–608. · Zbl 0678.62010 · doi:10.1093/biomet/76.3.604
[107] Tierney, L. J. (1990). Lispstat . Wiley, New York.
[108] Tierney, L. J. and Kadane, J. B. (1986). Accurate approximations for posterior moments and marginal densities. J. Amer. Statist. Assoc. 81 82–86. · Zbl 0587.62067 · doi:10.2307/2287970
[109] Walker, A. M. (1969). On the asymptotic behaviour of posterior distributions. J. Roy. Statist. Soc. Ser. B 31 80–88. · Zbl 0176.48901
[110] Wang, S. (1993). Saddlepoint approximations in conditional inference. J. Appl. Probab. 30 397–404. · Zbl 0773.62012 · doi:10.2307/3214848
[111] Wasserman, L. (2000). Asymptotic inference for mixture models using data-dependent priors. J. R. Stat. Soc. Ser. B Stat. Methodol. 62 159–180. · Zbl 0976.62028 · doi:10.1111/1467-9868.00226
[112] Welch, B. and Peers, H. W. (1963). On formulae for confidence points based on integrals of weighted likelihoods. J. Roy. Statist. Soc. Ser. B 25 318–329. · Zbl 0117.14205
[113] Wong, A. C. M. and Wu, J. (2000). Practical small-sample asymptotics for distributions used in life-data analysis. Technometrics 42 149–155.
[114] Wong, A. C. M. and Wu, J. (2001). Approximate inference for the factor loading of a simple factor analysis model. Scand. J. Statist. 28 407–414. · Zbl 0973.62049 · doi:10.1111/1467-9469.00244
[115] Wong, A. C. M. and Wu, J. (2002). Small sample asymptotic inference for coefficient of variation: Normal and non-normal models. J. Statist. Plann. Inference 104 73–82. · Zbl 1006.62020 · doi:10.1016/S0378-3758(01)00241-5
[116] Wu, J., Jiang, G. Y., Wong, A. C. M. and Sun, X. (2002). Likelihood analysis for the ratio of means of two independent lognormal distributions. Biometrics 58 463–469. · Zbl 1210.62014 · doi:10.1111/j.0006-341X.2002.00463.x
[117] Yau, C. L. and Huzurbazar, A. V. (2002). Analysis of censored and incomplete survival data using flowgraph models. Statistics in Medicine 21 3727–3743.
[118] Yi, G. Y., Wu, J. and Liu, Y. (2002). Implementation of higher-order asymptotics to S-PLUS. Comput. Statist. Data Anal. 40 775–800. · Zbl 1103.62302 · doi:10.1016/S0167-9473(02)00096-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.