zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Asymptotic inference for nearly unstable INAR(1) models. (English) Zbl 1042.62080
Summary: A sequence of first-order integer-valued autoregressive (INAR(l)) processes is investigated, where the autoregressive-type coefficient converges to 1. It is shown that the limiting distribution of the conditional least squares estimator for this coefficient is normal and the rate of convergence is $n^{3/2}$. Nearly critical Galton-Watson processes with unobservable immigration are also discussed.

MSC:
62M10Time series, auto-correlation, regression, etc. (statistics)
62F12Asymptotic properties of parametric estimators
62E20Asymptotic distribution theory in statistics
60J80Branching processes
WorldCat.org
Full Text: DOI
References:
[1] Al-Osh, M. A. and Alzaid, A. A. (1987). First-order integer-valued autoregressive (INAR(1)) process. J. Time Series Anal. 8, 261--275. · Zbl 0617.62096 · doi:10.1111/j.1467-9892.1987.tb00438.x
[2] Al-Osh, M. A. and Alzaid, A. A. (1990). An integer-valued $p$th-order autoregressive structure (INAR($p$)) process. J. Appl. Prob. 27, 314--324. · Zbl 0704.62081 · doi:10.2307/3214650
[3] Arató, M., Pap, G. and van Zuijlen, M. C. A. (2001). Asymptotic inference for spatial autoregression and orthogonality of Ornstein--Uhlenbeck sheets. Comput. Math. Appl. 42, 219--229. · Zbl 0996.62075 · doi:10.1016/S0898-1221(01)00146-8
[4] Billingsley, P. (1968). Convergence of Probability Measures. John Wiley, New York. · Zbl 0172.21201
[5] Cardinal, M., Roy, R. and Lambert, J. (1999). On the application of integer-valued time series models for the analysis of disease incidence. Statist. Med. 18, 2025--2039. · doi:10.1002/(SICI)1097-0258(19990815)18:15<2025::AID-SIM163>3.3.CO;2-4
[6] Chan, N. H. and Wei, C. Z. (1987). Asymptotic inference for nearly nonstationary AR(1) processes. Ann. Statist. 15, 1050--1063. · Zbl 0638.62082 · doi:10.1214/aos/1176350492
[7] Chow, Y. S. and Teicher, H. (1978). Probability Theory. Springer, New York. · Zbl 0399.60001
[8] Dion, J. P., Gauthier, G. and Latour, A. (1995). Branching processes with immigration and integer-valued time series. Serdica Math. J. 21, 123--136. · Zbl 0819.62067 · eudml:11662
[9] Du, J. G. and Li, Y. (1991). The integer-valued autoregressive INAR($p$) model. J. Time Series Anal. 12, 129--142. · Zbl 0727.62084 · doi:10.1111/j.1467-9892.1991.tb00073.x
[10] Franke, J. and Seligmann, T. (1993). Conditional maximum likelihood estimates for INAR(1) processes and their application to modeling epileptic seizure counts. In Developments in Time Series Analysis , ed. T. Subba Rao, Chapman and Hall, London, pp. 310--330. · Zbl 0878.62080
[11] Fuller, W. A. (1996). Introduction to Statistical Time Series , 2nd edn. John Wiley, New York. · Zbl 0851.62057
[12] Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application. Academic Press, New York. · Zbl 0462.60045
[13] Jacod, J. and Shiryayev, A. N. (1987). Limit Theorems for Stochastic Processes. Springer, Berlin. · doi:10.1016/0304-4149(87)90050-0
[14] Klimko, L. A. and Nelson, P. I. (1978). On conditional least squares estimation for stochastic processes. Ann. Statist. 6, 629--642. · Zbl 0383.62055 · doi:10.1214/aos/1176344207
[15] Latour, A. (1997). The multivariate GINAR($p$) process. Adv. Appl. Prob. 29 , 228--248. · Zbl 0871.62073 · doi:10.2307/1427868
[16] Steutel, F. and van Harn, K. (1979). Discrete analogues of self-decomposability and stability. Ann. Prob. 7, 893--899. · Zbl 0418.60020 · doi:10.1214/aop/1176994950
[17] Tanaka, K. (1996). Time Series Analysis. Nonstationary and Noninvertible Distribution Theory. John Wiley, New York. · Zbl 0861.62062
[18] Venkataraman, K. N. and Nanthi, K. (1982). A limit theorem on subcritical Galton--Watson process with immigration. Ann. Prob. 10, 1069--1074. · Zbl 0498.62073 · doi:10.1214/aop/1176993730
[19] Wei, C. Z. and Winnicki, J. (1990). Estimation of the means in the branching process with immigration. Ann. Statist. 18 , 1757--1773. · Zbl 0736.62071 · doi:10.1214/aos/1176347876