## Dissipative Chebyshev exponential-fitted methods for numerical solution of second-order differential equations.(English)Zbl 1042.65053

Chebyshev interpolation is employed to produce an algorithm for $$n$$th-order approximate soluton of the ordinary oscillatory differential equation $y''- 2gy'+ (g^2+ w^2)y= f(x,y),\quad y= y(x),\quad x_0\leq x\leq\infty.\tag{1}$ The mapping $$s= x+{1\over 2} h(\alpha+ 1)$$ takes $$-1\leq \alpha\leq 2\xi-1$$ to $$x\leq s\leq x+\xi h$$, $$\xi\in [0,1]$$. Expanding in Chebyshev polynomials in $$\alpha$$ the solution $$y$$ of (1) satisfies $y(x+\xi h)= 2\exp(g\xi h)y(x)\cos(w\xi h)- \exp(2g\,\xi h) y(x-\xi h)+ \sum^\infty_{k=0} (a^+_k R^+_k+ a_k' R^-_k),\tag{2}$
$R^{\pm}_k= (h/2w) \int^{2\xi-1}_{-1} \exp(gh(\xi\mp \textstyle{{1\over 2}}(\alpha+ 1))\,T_k(\alpha)\sin (h(\xi- \textstyle{{1\over 2}} (\alpha+1))\,d\alpha.$ Truncating the series (2) after $$n$$ terms and choosing $$\xi= \xi_j= {1\over 2}(\alpha_j+ 1)$$ leads to an implicit algorithm relating the values $$y(x\pm \xi_j h)$$ where $$\alpha_j$$ are the extremal nodes of $$T_n(\alpha)$$, $$j= 1,\dots, n$$. Numerical results are presented for four specific linear examples. These compare well with results obtained by other methods.

### MSC:

 65L05 Numerical methods for initial value problems involving ordinary differential equations 65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations 34A34 Nonlinear ordinary differential equations and systems
Full Text:

### References:

 [1] Calvo, M., Explicit Runge-Kutta methods for initial value problems with oscillating solutions, J. Comput. Appl. Math., 476, 195-212 (1996) · Zbl 0871.65073 [2] C.W. Clenshaw, The numerical solution of ordinary differential equations in Chebyshev series, in: P.I.C.C. Symposium on Differential and Integral Equations, Birkhäuser Verlag, Rome, 1960, p. 222.; C.W. Clenshaw, The numerical solution of ordinary differential equations in Chebyshev series, in: P.I.C.C. Symposium on Differential and Integral Equations, Birkhäuser Verlag, Rome, 1960, p. 222. · Zbl 0107.10801 [3] Clenshaw, C. W.; Norton, H. J., The solution of nonlinear ordinary differential equations in Chebyshev series, Comput. J., 6, 88 (1963) · Zbl 0113.11002 [4] Coleman, J. P.; Booth, A. S., Analysis of a family of Chebyshev methods for $$y$$″=$$f(x,y)$$, J. Comput. Appl. Math., 44, 95 (1992) · Zbl 0773.65048 [5] Denk, G., A new numerical method for the integration of highly oscillatory second-order ordinary differential equations, Appl. Numer. Math., 13, 57-67 (1993) · Zbl 0808.65081 [6] Fox, L.; Parker, I. B., Chebyshev polynomials in numerical analysis (1968), Oxford University Press: Oxford University Press London · Zbl 0153.17502 [7] Hairer, E.; Wanner, G., Solving Ordinary Differential Equations II (1991), Springer: Springer Berlin · Zbl 0729.65051 [8] Hairer, E.; Norsett, S. P.; Wanner, G., Solving Ordinary Differential Equations I (1987), Springer: Springer Berlin · Zbl 0638.65058 [9] Henrici, P., Discrete Variable Methods in Ordinary Differential Equations (1962), Wiley: Wiley New York · Zbl 0112.34901 [10] Nayfeh, A., Perturbation Methods (1973), Wiley: Wiley New York · Zbl 0265.35002 [11] Norton, H. J., The iterative solution of nonlinear ordinary differential equations in Chebyshev series, Comput. J., 7, 76 (1964) · Zbl 0133.08704 [12] Panowsky, J.; Richardson, D. L., A family of implicit Chebyshev methods for the numerical integration of second-order differential equations, J. Comput. Appl. Math., 23, 35-51 (1988) · Zbl 0649.65048 [13] Stiefel, E.; Bettis, D. G., Stabilization of Cowell’s method, Numer. Math., 13, 154 (1969) · Zbl 0219.65062 [14] Vigo-Aguiar, J.; Ferrándiz, J. M., A general procedure for the adaptation of multistep algorithms to the integration of oscillatory problems, SIAM J. Numer. Anal., 35, 4, 1684-1708 (1998) · Zbl 0916.65081 [15] Vigo-Aguiar, J.; Richardson, D. L., Modification of the Richardson-Panovsky methods for precise integration of satellite orbits, Comput. Math. Appl., 45, 25-36 (2003) · Zbl 1179.70006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.