Cavitated bifurcation for incompressible hyperelastic material. (English) Zbl 1042.74018

Summary: We study the spherical cavitated bifurcation or a hyperelastic solid sphere made of the incompressible Valanis-Landel material under boundary dead loading. The analytic solution for the bifurcation problem is obtained. The catastrophe and concentration of stresses are discussed. The stability of solutions is verified through the energy comparison. We also observe the growth of a pre-existing micro-void.


74G60 Bifurcation and buckling
74B20 Nonlinear elasticity
Full Text: DOI


[1] Ball J M. Discontinuous equilibrium solutions and cavitations in nonlinear elasticity[J].Philos Trans Roy Soc Lond Ser A, 1982,306(3): 557–610. · Zbl 0513.73020 · doi:10.1098/rsta.1982.0095
[2] Horgan C O, Abeyaratne R. A bifurcation problem for a compressible nonlinearly elastic medium: growth of a micro-viod[J].J Elasticity, 1986,16(1): 189–200. · Zbl 0585.73017 · doi:10.1007/BF00043585
[3] Sivaloganathan J. Uniqueness of regular and singular equilibria for spherically symmetric problems of nonlinear elasticity[J].Arch Rail Mech Anal, 1986,96(1): 97–136. · Zbl 0628.73018
[4] Chou-Wang M-S, Horgan C O. Void nucleation and growth for a class of incompressible nonlinearly elastic materials[J].Internat J Solids Structures, 1989,25(11): 1239–1254. · Zbl 0703.73025 · doi:10.1016/0020-7683(89)90088-7
[5] Horgan C O, Polignone D A. Cavitation in nonlinearly elastic solids: A review[J].Appl Mech Rev, 1995,48(8): 471–485. · doi:10.1115/1.3005108
[6] Horgan C O, Void nucleation and growth for compressible non-linearly elastic materials: An example[J].Internat J Solids Structures, 1992,29(2):279–291. · Zbl 0755.73026 · doi:10.1016/0020-7683(92)90200-D
[7] Horgan C O, Pence T J. Void nucleation in tensile dead-loading of a composite incompressible nonlinearly elastic sphere[J].J Elasticity, 1989,21(1): 61–82. · Zbl 0687.73017 · doi:10.1007/BF00040934
[8] ZHANG Xin-chun, CHENG Chang-jun. The spherical cavitation bifurcation in surperelastic materials[J].Acta Mechanica Sinica, 1996,28(6): 751–755. (in Chinese)
[9] Valanis K C, Landel R F. The strain energy function of a hyperelastic material in terms of the extension rations[J].J Applied Physics, 1967,38(28): 2997–3002. · doi:10.1063/1.1710039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.