zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An adaptive feedback control of linearizable chaotic systems. (English) Zbl 1042.93510
Summary: This paper proposes an adaptive feedback controller for a class of chaotic systems. This controller can be used for tracking a smooth orbit that can be a limit cycle or a chaotic orbit of another system. Based on Lyapunov approach, the adaptation law is determined to tune the controller gain vector in order to track a predetermined linearizing feedback control. To demonstrate the efficiency of the proposed scheme, two well-known chaotic systems namely Chua’s circuit and a Lur’e-like system are considered as illustrative examples.

93C10Nonlinear control systems
37D45Strange attractors, chaotic dynamics
Full Text: DOI
[1] Schiff, S.; Jerger, K.; Duong, D.; Chang, T.; Spano, M.; Ditto, W.: Controlling chaos in the brain. Nature 370, 615-620 (1994)
[2] Garfinkel, A.; Spano, M. L.; Ditto, W. L.; Weiss, J. N.: Controlling cardiac chaos. Science 257, 1230-1235 (1992)
[3] Wu, C. W.; Chua, L. O.: A simple way to synchronize chaotic systems with applications to secure communication systems. Int. J. Bifurcation chaos 3, No. 6, 1619-1627 (1993) · Zbl 0884.94004
[4] Ott, E.; Grebogi, C.; Yorke, J. A.: Controlling chaos. Phys. rev. Lett. 64, 1196-1199 (1990) · Zbl 0964.37501
[5] Boccaletti, S.; Grebogi, C.; Lai, Y. -C.; Maricini, H.; Maza, D.: The control of chaos: theory and applications. Phys. rep. 329, 103-197 (2000)
[6] Yang, S. -K.; C-L, C.; Yau, H. -T.: Control of chaos in Lorenz system. Chaos soliton. Fract. 13, 767-780 (2002) · Zbl 1031.34042
[7] Hwang, C. -C.; Hsieh, J. -Y.; Lin, R. -S.: A linear continuous feedback control of Chua’s circuit. Chaos soliton. Fract. 8, 1507-1515 (1997)
[8] Bernardo, M. D.: An adaptive approach to the control and synchronization of continuous-time chaotic systems. Int. J. Bifurcation chaos 6, No. 3, 557-568 (1996) · Zbl 0900.70413
[9] Tian, Y. -C.; Tade, M. O.; Levy, D.: Constrained control of chaos. Phys. lett. A 296, 87-90 (2002) · Zbl 0994.37025
[10] Hwang, C. -C.; Fung, R. -F.; Hsieh, J. -Y.; Li, W. -J.: A nonlinear feedback control of the Lorenz equation. Int. J. Eng. sci. 37, 1893-1900 (1999) · Zbl 1210.93033
[11] Solak, E.; Morgül, Ö; Ersoy, U.: Observer-based control of a class of chaotic systems. Phys. lett. A 279, No. 1, 47-55 (2001) · Zbl 0972.37020
[12] John, J. K.; Amritkar, A. E.: Synchronization by feedback and adaptive control. Int. J. Bifurcation chaos 4, No. 6, 1687-1695 (1994) · Zbl 0875.93219
[13] Chen, S.; Lü, J.: Synchronization of an uncertain unified chaotic system via adaptive control. Chaos soliton. Fract. 14, 643-647 (2002) · Zbl 1005.93020
[14] Wang, C.; Ge, S.: Adaptive synchronization of uncertain chaotic systems via backstepping design. Chaos soliton. Fract. 12, 1199-1206 (2001) · Zbl 1015.37052
[15] Isidori, A.: Nonlinear control systems. (1995) · Zbl 0878.93001
[16] Khalil, H. K.: Nonlinear systems. (1992) · Zbl 0969.34001
[17] Pecora, L. M.; Carroll, T. L.: Driving systems with chaotic signals. Phys. rev. A 44, No. 4, 2374-2383 (1991)