zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Microlocal defect measures, application to the Lamé system. (Mesures de défaut de compacité, application au système de Lamé.) (French) Zbl 1043.35009
Many authors, including the second author of this paper, have studied the asymptotic propagation of the energy for the solutions of systems of PDEs. In this paper generalizations of some well-known results are obtained. The key is the proposed definition of the microlocal defect measures for boundary value systems satisfying the strong Lopatinski condition. The proof of the theorem of propagation given is interesting. The imposed condition implies naturally the limit condition of Lopatinski type. Applications for the solutions of the Lame system are obtained. A description of the theorem of propagation for the transversal wave when the longitudinal energy is negligible. Finally, the conjecture of {\it G. Lebeau} and {\it E. Zuazua} [Arch. Ration. Mech. Anal. 148, No. 3, 179--231 (1999; Zbl 0939.74016)] is proved.

MSC:
35A27Microlocal methods; sheaf-theoretic methods (PDE)
35A21Propagation of singularities (PDE)
74B20Nonlinear elasticity
35Q72Other PDE from mechanics (MSC2000)
35L20Second order hyperbolic equations, boundary value problems
58J15Relations with hyperfunctions (PDE on manifolds)
74F05Thermal effects in solid mechanics
74G99Equilibrium (steady-state) problems
WorldCat.org
Full Text: DOI Numdam EuDML
References:
[1] Bardos C , Lebeau G , Rauch J , Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary , SIAM J. Control Optim. 305 ( 1992 ) 1024 - 1065 . MR 1178650 | Zbl 0786.93009 · Zbl 0786.93009 · doi:10.1137/0330055
[2] Chazarain J , Piriou A , Introduction à la théorie des équations aux dérivées partielles linéaires , Gauthier-Villars , 1970 . MR 598467 | Zbl 0446.35001 · Zbl 0446.35001
[3] Denker N , On the propagation of the polarization set for systems of real principal type , J. Functional Anal. 46 ( 1982 ) 351 - 373 . MR 661876 | Zbl 0487.58028 · Zbl 0487.58028 · doi:10.1016/0022-1236(82)90051-9
[4] Gérard C , Propagation de la polarisation pour des problèmes aux limites convexes pour les bicaractéristiques , Comm. Partial Differential Equations 10 ( 1985 ) 1347 - 1382 . MR 812335 | Zbl 0593.58037 · Zbl 0593.58037 · doi:10.1080/03605308508820410
[5] Gérard P , Microlocal defect measures , Comm. Partial Differential Equations 16 ( 1991 ) 1761 - 1794 . MR 1135919 | Zbl 0770.35001 · Zbl 0770.35001 · doi:10.1080/03605309108820822
[6] Gérard P , Leichtnam E , Ergodic properties of eigenfunctions for the Dirichlet problem , Duke Math. J. 71 ( 1993 ) 559 - 607 . Article | MR 1233448 | Zbl 0788.35103 · Zbl 0788.35103 · doi:10.1215/S0012-7094-93-07122-0 · http://minidml.mathdoc.fr/cgi-bin/location?id=00008517
[7] Hörmander L , The Analysis of Linear Partial Differential Operators I , Grundlehren der mathematischen Wissenschaften , 256 , Springer Verlag , 1983 . MR 717035 | Zbl 0521.35001 · Zbl 0521.35001
[8] Hörmander L , The Analysis of Linear Partial Differential Operators III , Grundlehren der mathematischen Wissenschaften , 274 , Springer Verlag , 1985 . MR 781536 | Zbl 0601.35001 · Zbl 0601.35001
[9] Koch H , Tataru D , On the spectrum of hyperbolic semigroups , Comm. Partial Differential Equations 20 ( 5-6 ) ( 1995 ) 901 - 937 . MR 1326911 | Zbl 0823.35108 · Zbl 0823.35108 · doi:10.1080/03605309508821119
[10] Lebeau G , Équation des ondes amorties , in: Boutet de Monvel A , Marchenko V (Eds.), Algebraic and Geometric Methods in Mathematical Physics , Kluwer Academic , Dordrecht , 1996 , pp. 73 - 109 . MR 1385677 | Zbl 0863.58068 · Zbl 0863.58068
[11] Lebeau G , Zuazua E , Decay rates for the three-dimensional linear system of thermoelasticity , Prépublications du Centre de Mathématiques de l’École Polytechnique, 98-3 , 1998 . MR 1716306
[12] Miller L , Propagation d’ondes semi-classiques à travers une interface et mesures 2-microlocales , PhD thesis, École Polytechnique , 1996 .
[13] Melrose R.B , Sjöstrand J , Singularities of boundary value problems I , Comm. Pure Appl. Math. 31 ( 1978 ) 593 - 617 . MR 492794 | Zbl 0368.35020 · Zbl 0368.35020 · doi:10.1002/cpa.3160310504
[14] Melrose R.B , Sjöstrand J , Singularities of boundary value problems I & II , Comm. Pure Appl. Math. 31 ( 1978 ) 593 - 617 , 35 (1982) 129-168. MR 492794 | Zbl 0368.35020 · Zbl 0368.35020 · doi:10.1002/cpa.3160310504
[15] Tartar L , H-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations , Proc. Royal Soc. Edinburgh 115-A ( 1990 ) 193 - 230 . MR 1069518 | Zbl 0774.35008 · Zbl 0774.35008 · doi:10.1017/S0308210500020606