Klemelä, Jussi; Tsybakov, Alexandre B. Sharp adaptive estimation of linear functionals. (English) Zbl 1043.62029 Ann. Stat. 29, No. 6, 1567-1600 (2001). Summary: We consider estimation of a linear functional \(T(f)\) where \(f\) is an unknown function observed in Gaussian white noise. We find asymptotically sharp adaptive estimators on various scales of smoothness classes in multidimensional situations. The results allow evaluating explicitly the effect of dimension and treating general scales of classes. Furthermore, we establish a connection between sharp adaptation and optimal recovery. Namely, we propose a scheme that reduces the construction of sharp adaptive estimators on a scale of functional classes to a solution of the corresponding optimization problem. Cited in 16 Documents MSC: 62G07 Density estimation 62G05 Nonparametric estimation 62G20 Asymptotic properties of nonparametric inference Keywords:adaptive curve estimation; bandwidth selection; kernel estimation; minimax risk; exact constants in nonparametric smoothing × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Arestov, V. V. (1989). Optimal recovery of operators and related problems. Proc. Steklov Math. Instit. 189 3-20. · Zbl 0716.41023 [2] Barron, A., Birgé, L. and Massart, P. (1999). Risk bounds for model selection via penalization. Probab. TheoryRelated Fields 113 301-413. Brown, L. and Low, M. (1996a). Asymptotic equivalence of nonparametric regression and white noise. Ann. Statist. 24 2384-2398. Brown, L. and Low, M. (1996b). A constrained risk inequality with applications to nonparametric estimation. Ann. Statist. 24 2524-2535. Butucea, C. (2001a). Exact adaptive pointwise estimation on Sobolev classes of densities. ESAIM: Prob. Statist. 5 1-31. Butucea, C. (2001b). Numerical results concerning a sharp adaptive density estimator. Comput. Statist. 16 271-298. · Zbl 0946.62036 [3] Cavalier, L. and Tsybakov, A. B. (2000). Sharp adaptation for inverse problems with random noise. Available at http://www.proba.jussieu.fr/mathdoc/preprints/index.html#2000. Probab. TheoryRelated Fields. To appear. Donoho, D. (1994a). Asymptotic minimax risk for sup-norm loss: solution via optimal recovery. Probab. TheoryRelated Fields 99 145-170. Donoho, D. (1994b). Statistical estimation and optimal recovery. Ann. Statist. 22 238-270. URL: · Zbl 1039.62031 · doi:10.1007/s004400100169 [4] Donoho, D. L., Johnstone, I. M., Kerkyacharian, G. and Picard, D. (1995). Wavelet shrinkage: Asymptopia? J. Royal Statist. Soc. Ser. B 57 301-369. JSTOR: · Zbl 0827.62035 [5] Donoho, D. and Liu, R. (1991). Geometrizing rates of convergence III. Ann. Statist. 19 668-701. · Zbl 0754.62029 · doi:10.1214/aos/1176348115 [6] Donoho, D. and Low, M. (1992). Renormalization exponents and optimal pointwise rates of convergence. Ann. Statist. 20 944-970. · Zbl 0797.62032 · doi:10.1214/aos/1176348665 [7] Erfomovich, S. (2000). Sharp adaptive estimation of multivariate curves. Math. Meth. Statist. 9 117-139. · Zbl 1006.62033 [8] Efromovich, S. Yu. and Low, M. (1994). Adaptive estimates of linear functionals. Probab. Theory Related Fields 98 261-275. · Zbl 0796.62037 · doi:10.1007/BF01192517 [9] Efroimovich, S. Yu. and Pinsker, M. S. (1984). Learning algorithm for nonparametric filtering. Automat. Remote Control 11 1434-1440. · Zbl 0637.93069 [10] Fuller, A. T. (1960). Optimization of relay systems via various performance indices. In Proceedings of the First International IFAC Congress, Moscow 2 584-607. North-Holland, Amsterdam. [11] Gabushin, V. N. (1968). Exact constants in inequalities between norms of the derivatives of a function. Math. Notes 4 221-232. · Zbl 0172.33202 · doi:10.1007/BF01094963 [12] Gabushin, V. N. (1970). Best approximation of functionals on some sets. Math. Notes 8 551-562. · Zbl 0216.13603 [13] Goldenshluger, A. and Nemirovskii, A. (1997). On spatial adaptive estimation of nonparametric regression. Math. Methods Statist. 6 135-170. · Zbl 0892.62018 [14] Golubev, G. K. and Nussbaum, M. (1990). Adaptive spline estimates for nonparametric regression models. TheoryProbab. Appl. 37 521-529. · Zbl 0787.62044 · doi:10.1137/1137102 [15] Härdle, W., Kerkyacharian, G., Picard, D. and Tsybakov, A. (1998). Wavelets, Approximation and Statistical Applications. Lecture Notes in Statist. 129. Springer, Berlin. · Zbl 0899.62002 [16] Ibragimov, I. A. and Hasminskii, R. Z. (1981). Statistical Estimation. Asymptotic Theory. [17] Springer, Berlin. (Published in Russian in 1979). [18] Ibragimov, I. A. and Hasminskii, R. Z. (1984). On nonparametric estimation of the value of a linear functional in Gaussian white noise. TheoryProbab. Appl. 29 18-32. · Zbl 0532.62061 [19] Jones, M. C., Marron, J. S. and Sheather, S. J. (1996). Progress in data-based bandwidth selection for kernel density estimation. Comput. Statist. 11 337-381. · Zbl 0897.62037 [20] Korostelev, A. P. (1993). Asymptotically minimax regression estimator in the uniform norm up to exact constant. TheoryProbab. Appl. 38 737-743. · Zbl 0819.62034 · doi:10.1137/1138075 [21] Legostaeva, I. L. and Shiryayev, A. N. (1971). Minimax weigths in a trend detection problem of a random process. TheoryProbab. Appl. 16 344-349. · Zbl 0237.62060 · doi:10.1137/1116031 [22] Leonov, S. L. (1997). On the solution of an optimal recovery problem and its applications in nonparametric regression. Math. Methods Statist. 6 476-490. · Zbl 0920.62052 [23] Leonov, S. L. (1999). Remarks on extremal problems in nonparametric curve estimation. Statist. Probab. Lett. 43 169-178. · Zbl 0951.62035 · doi:10.1016/S0167-7152(98)00256-9 [24] Lepski, O. V. (1990). One problem of adaptive estimation in Gaussian white noise. TheoryProbab. Appl. 35 454-466. Lepski, O. V. (1992a). Asymptotically minimax adaptive estimation II: Statistical models without optimal adaptation. Adaptive estimators. TheoryProbab. Appl. 37 433-468. Lepski, O. V. (1992b). On problems of adaptive estimation in white Gaussian noise. In Topics in Nonparametric Estimation. Advances in Soviet Math. (Khasminskii R. Z., ed.) 12 87-106, Amer. Math. Soc., Providence, RI. · Zbl 0745.62083 [25] Lepski, O. V. and Levit, B. Ya. (1998). Adaptive minimax estimation of infinitely differentiable functions. Math. Methods Statist. 7 123-156. · Zbl 1103.62332 · doi:10.2174/138955708784534454 [26] Lepski, O. V. and Levit, B. Ya. (1999). Adaptive nonparametric estimation of smooth multivariate functions. Math. Methods Statist. 8 344-370. · Zbl 1104.62312 [27] Lepski, O. V., Mammen, E. and Spokoiny, V. G. (1997). Ideal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selection. Ann. Statist. 25 929-947. · Zbl 0885.62044 · doi:10.1214/aos/1069362731 [28] Lepski, O. V. and Spokoiny, V. G. (1997). Optimal pointwise adaptive methods in nonparametric estimation. Ann. Statist. 25 2512-2546. · Zbl 0894.62041 · doi:10.1214/aos/1030741083 [29] Lepski, O. V. and Tsybakov, A. B. (2000). Asymptotically exact nonparametric hypothesis testing in sup-norm and at a fixed point. Probab. TheoryRelated Fields 117 17-48. · Zbl 0971.62022 · doi:10.1007/s004409900043 [30] Micchelli, C. A. and Rivlin, T. J. (1977). A survey of optimal recovery. In Optimal Estimation in Approximation Theory, 1-54. Plenum Press, New York. · Zbl 0386.93045 [31] Nemirovski, A. (2000). Topics in nonparametric statistics. Ecole d’été de Probabilités de Saint-Flour XXVIII. Lecture Notes in Math. 1738 85-277. Springer, Berlin. · Zbl 0998.62033 [32] Nussbaum, M. (1996). Asymptotic equivalence of density estimation and Gaussian white noise. Ann. Statist. 24 2399-2430. · Zbl 0867.62035 · doi:10.1214/aos/1032181160 [33] Sacks, J. and Ylvisaker, N. D. (1981). Asymptotically optimum kernels for density estimation at a point. Ann. Statist. 9 334-346. · Zbl 0458.62031 · doi:10.1214/aos/1176345399 [34] Stone, C. J. (1980). Optimal rates of convergence for nonparametric estimators. Ann.Statist. 8 1348-1360. · Zbl 0451.62033 · doi:10.1214/aos/1176345206 [35] Taikov, L. V. (1968). Kolmogorovtype inequalities and the best formulas of numerical differentiation. Math. Notes 4 233-238. · Zbl 0206.34901 · doi:10.1007/BF01094964 [36] Tsybakov, A. B. (1998). Pointwise and sup-norm sharp adaptive estimation of functions on the Sobolevclasses. Ann. Statist. 26 2420-2469. · Zbl 0933.62028 · doi:10.1214/aos/1024691478 [37] Zhao, L. H. (1997). Minimax linear estimation in a white noise problem. Ann. Statist. 25 745-755. · Zbl 0879.62033 · doi:10.1214/aos/1031833671 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.