×

Multiscale maximum likelihood analysis of a semiparametric model, with applications. (English) Zbl 1043.62043

Summary: A special semiparametric model for a univariate density is introduced that allows analyzing a number of problems via appropriate transformations. Two problems treated in some detail are testing for the presence of a mixture and detecting a wear-out trend in a failure rate. The analysis of the semiparametric model leads to an approach that advances the maximum likelihood theory of the Grenander estimator to a multiscale analysis. The construction of the corresponding test statistic rests on an extension of a result on a two-sided Brownian motion with quadratic drift to the simultaneous control of “excursions under parabolas” at various scales of a Brownian bridge. The resulting test is shown to be asymptotically optimal in the minimax sense regarding both rate and constant, and adaptive with respect to the unknown parameter in the semiparametric model. The performance of the method is illustrated with a simulation study for the failure rate problem and with data from a flow cytometry experiment for the mixture analysis.

MSC:

62G10 Nonparametric hypothesis testing
62N05 Reliability and life testing
62F15 Bayesian inference
62G20 Asymptotic properties of nonparametric inference

Software:

SiZer
Full Text: DOI

References:

[1] Brooks, S. P. (1998). MCMC convergence diagnosis via multivariate bounds on log-concave densities. Ann. Statist. 26 398-433. · Zbl 0961.65002 · doi:10.1214/aos/1030563991
[2] Chaudhuri, P. and Marron, J. S. (1999). SiZer for exploration of structures in curves. J. Amer. Statist. Assoc. 94 807-823. JSTOR: · Zbl 1072.62556 · doi:10.2307/2669996
[3] Chernoff, H. (1964). Estimation of the mode. Ann. Inst. Statist. Math. 16 31-41. · Zbl 0212.21802 · doi:10.1007/BF02868560
[4] Chow, Y. S. and Teicher, H. (1988). Probability Theory, 2nd ed. Springer, NewYork. · Zbl 0652.60001
[5] Dellaportas, P. and Smith, A. F. M. (1993). Bayesian inference for generalized linear and proportional hazards models via Gibbs sampling. J. Roy. Statist. Soc. Ser. C 42 443-460. JSTOR: · Zbl 0825.62409 · doi:10.2307/2986324
[6] D ümbgen, L. and Spokoiny, V. G. (2001). Multiscale testing of qualitative hypotheses. Ann. Statist. 29 124-152. · Zbl 1029.62070 · doi:10.1214/aos/996986504
[7] Gilks, W. R. and Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. J. Roy. Statist. Soc. Ser. C 41 337-348. · Zbl 0825.62407 · doi:10.2307/2347565
[8] Glaser, R. E. (1980). Bathtub and related failure rate characteristics. J. Amer. Statist. Assoc. 75 667-672. JSTOR: · Zbl 0497.62017 · doi:10.2307/2287666
[9] Green, P. J. and Silverman, B. W. (1994). Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach. Chapman and Hall, London. · Zbl 0832.62032
[10] Groeneboom, P. (1985). Estimating a monotone density. In Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer (L. Le Cam and R. A. Olshen, eds.) 2 539- 555. Wadsworth, Belmont, CA. · Zbl 1373.62144
[11] Groeneboom, P. (1989). Brownian motion with a parabolic drift and Airy functions. Probab. Theory related Fields 81 79-109. · doi:10.1007/BF00343738
[12] Groeneboom, P., Hooghiemstra, G. and Lopuaä, H. P. (1999). Asymptotic normality of the L1 error of the Grenander estimator. Ann. Statist. 27 1316-1347. · Zbl 1105.62342 · doi:10.1214/aos/1017938928
[13] Groeneboom, P., Jongbloed, G. and Wellner, J. A. (2001). Estimation of a convex function: characterizations and asymptotic theory. Ann. Statist. · Zbl 1043.62027 · doi:10.1214/aos/1015345958
[14] Hildenbrand, K. and Hildenbrand W. (1985). On the mean income effect: a data analysis of the U.K. family expenditure survey. In Contributions to Mathematical Economics (W. Hildenbrand and A. Mas-Colell, eds.) 247-263. North-Holland, Amsterdam. · Zbl 0648.90010
[15] Ingster, Y. I. (1993). Asymptotically minimax hypothesis testing for nonparametric alternatives I-III. Math. Methods Statist. 2 85-114, 171-189, 249-337. · Zbl 0798.62057
[16] Jongbloed, G. (1998). The iterative convex minorant algorithm for nonparametric estimation. J. Comput. Graph. Statist. 7 310-321. JSTOR: · doi:10.2307/1390706
[17] Kim, J. and Pollard, D. (1990). Cube root asymptotics. Ann. Statist. 18 191-219. · Zbl 0703.62063 · doi:10.1214/aos/1176347498
[18] Koml ós, J., Major, P. and Tusnády, G. (1975). An approximation of partial sums of independent r. v.’s and the sample d.f. Z. Wahrsch. Verw. Gebiete 32 111-131. · Zbl 0308.60029 · doi:10.1007/BF00533093
[19] Korostelev, A. and Nussbaum, M. (1995). Density estimation in the uniform norm and white noise approximation. Preprint 154, Weierstrass Institute, Berlin.
[20] Liero, H., Läuter, H. and Konakov, V. (1998). Nonparametric versus parametric goodness of fit. Statistics 31 115-149. · Zbl 0952.62045 · doi:10.1080/02331889808802632
[21] Lindsay, B. G. and Roeder, K. (1992). Residual diagnostics for mixture models. J. Amer. Statist. Assoc. 87 785-794. JSTOR: · Zbl 0850.62337 · doi:10.2307/2290216
[22] Lindsay, B. G. and Roeder, K. (1997). Moment-based oscillation properties of mixture models. Ann. Statist. 25 378-386. · Zbl 0870.62013 · doi:10.1214/aos/1034276634
[23] Miller, R. G. (1981). Survival Analysis. Wiley, NewYork. · Zbl 0589.62092
[24] Neumann, M. H. (1998). Strong approximation of density estimators from weakly dependent observations by density estimators from independent observations. Ann. Statist. 26 2014-2048. · Zbl 0930.62038 · doi:10.1214/aos/1024691367
[25] Prakasa rao, B. L. S. (1969). Estimation of a unimodal density. Sankhy \?a Ser. A 31 23-36. · Zbl 0181.45901
[26] Robertson, T., Wright, F. T. and Dykstra, R. L. (1988). Order Restricted Statistical Inference. Wiley, NewYork. · Zbl 0645.62028
[27] Roeder, K. (1994). A graphical technique for determining the number of components in a mixture of normals. J. Amer. Statist. Assoc. 89 487-495. JSTOR: · Zbl 0798.62004 · doi:10.2307/2290850
[28] Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel density-estimation. J. Roy. Statist. Soc. Ser. B 53 683-690. JSTOR: · Zbl 0800.62219
[29] Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes with applications to statistics. Wiley, NewYork. · Zbl 1170.62365
[30] Silverman, B. W. (1982). On the estimation of a probability density function by the maximum penalized likelihood method. Ann. Statist 10 795-810. · Zbl 0492.62034 · doi:10.1214/aos/1176345872
[31] Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Chapman and Hall, London. · Zbl 0617.62042
[32] Titterington, D. M., Smith, A. F. M. and Makov, U. E. (1985). Statistical Analysis of Finite Mixture Distributions. Wiley, NewYork. Walther, G. (2000a). Multiscale maximum likelihood analysis of a semiparametric model, with applications. Technical report, Dept. Statistics, Stanford Univ. Walther, G. (2000b). Detecting the presence of mixing with multiscale maximum likelihood. J. Amer. Statist. Assoc. · Zbl 0646.62013
[33] Woodroofe, M. and Sun, J. (1999). Testing uniformity versus a monotone density. Ann. Statist. 27 338-360. · Zbl 0978.62039 · doi:10.1214/aos/1018031114
[34] Zhang, Y. L. and Newton, M. A. (1997). On calculating the nonparametric maximum likelihood estimator of a distribution given interval censored data. J. Comput. Graph. Statist.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.