zbMATH — the first resource for mathematics

Rotation space random fields with an application to fMRI data. (English) Zbl 1043.92019
The problem of testing for a signal with unknown location and scale in a Gaussian random field defined on \(R^2\) is investigated. The test statistic is the maximum over all filter’s rotations and scales of the rotation space field. The Euler characteristic and the tubes approaches are presented. The obtained results are applied to the problem of searching for activation in brain images.

92C55 Biomedical imaging and signal processing
62M40 Random fields; image analysis
60D05 Geometric probability and stochastic geometry
52A22 Random convex sets and integral geometry (aspects of convex geometry)
Full Text: DOI
[1] Abramowitz, M. and Stegun, I. A. (1964). Handbook of Mathematical Functions . National Bureau of Standards, Washington, DC. · Zbl 0171.38503
[2] Adler, R. J. (1981). The Geometry of Random Fields . Wiley, New York. · Zbl 0478.60059
[3] Adler, R. J. (2000). On excursion sets, tube formulae, and maxima of random fields. Ann. Appl. Probab. 10 1–74. · Zbl 1171.60338 · doi:10.1214/aoap/1019737664
[4] Adler, R. J. and Hasofer, A. M. (1976). Level crossing for random fields. Ann. Probab. 4 1–12. · Zbl 0329.60017 · doi:10.1214/aop/1176996176
[5] Daubechies, I. (1992). Ten Lectures on Wavelets. SIAM, Philadelphia. · Zbl 0776.42018
[6] Gott, J., Park, C., Juskiewicz, R., Bies, W., Bennett, D., Bouchet, F. R. and Stebbins, A. (1990). Topology of microwave background fluctuations: Theory. Astrophysical J. 352 1–14.
[7] Hotelling, H. (1939). Tubes and spheres in \(n\)-space and a class of statistical problems. Amer. J. Math. 61 440–460. · Zbl 0020.38302 · doi:10.2307/2371512
[8] Knowles, M. and Siegmund, D. (1989). On Hotelling’s approach to testing for a nonlinear parameter in regression. Internat. Statist. Rev. 57 205–220. · Zbl 0707.62125 · doi:10.2307/1403794
[9] Kwong, K., Belliveau, J., Chesler, D., Goldberg, I., Weisskoff, R., Poncelet, B., Kennedy, D., Hoppel, B., Cohen, M., Turner, R., Cheng, H.-M., Brady, T. and Rosen, B. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Nat. Acad. Sci. U.S.A. 89 5675–5679.
[10] Lindeberg, T. (1994). Scale-Space Theory in Computer Vision . Kluwer, Boston. · Zbl 0812.68040
[11] Millman, R. S. and Parker, G. D. (1977). Elements of Differential Geometry . Prentice-Hall, Englewood Clifts, NJ. · Zbl 0425.53001
[12] Naiman, D. Q. (1990). Volumes of tubular neighborhoods of spherical polyhedra and statistical inference. Ann. Statist. 18 685–716. JSTOR: · Zbl 0723.62019 · doi:10.1214/aos/1176347621 · links.jstor.org
[13] Ouyang, X., Pike, G. and Evans, A. (1994). fmri of human visual cortex using temporal correlation and spatial coherence analysis. In 13th Annual Symposium of the Society for Magnetic Resonance in Medicine .
[14] Poline, J.-B. and Mazoyer, B. (1994). Enhanced detection in brain activation maps using a multifiltering approach. J. Cerebral Blood Flow and Metabolism 14 639–642.
[15] Rabinowitz, D. (1994). Detecting clusters in disease incidence. In Change-Point Problems (E. G. Carlstein, H.-G. Müller and D. Siegmund, eds.) 255–275. IMS, Hayward, CA. · Zbl 1158.60352
[16] Searle, S. R. (1982). Matrix Algebra Useful for Statistics . Wiley, New York. · Zbl 0555.62002
[17] Shafie, K. (1998). The geometry of Gaussian rotation space random fields. Ph.D. dissertation, Dept. Mathematics and Statistics, McGill Univ., Montreal. Available at www.math.mcgill.ca/shafie.
[18] Siegmund, D. O. and Worsley, K. J. (1995). Testing for a signal with unknown location and scale in a stationary Gaussian random field. Ann. Statist. 23 608–639. JSTOR: · Zbl 0898.62119 · doi:10.1214/aos/1176324539 · links.jstor.org
[19] Siegmund, D. and Zhang, H. (1993). The expected number of local maxima of a random field and the volume of tubes. Ann. Statist. 21 1948–1966. JSTOR: · Zbl 0801.62087 · doi:10.1214/aos/1176349404 · links.jstor.org
[20] Sigal, S. (1998). Detection of a smooth signal in fixed sample and sequential problems. Ph.D. dissertation, Dept. Statistics, Stanford Univ.
[21] Sun, J. (1993). Tail probabilities of the maxima of Gaussian random fields. Ann. Probab. 21 34–71. JSTOR: · Zbl 0772.60038 · doi:10.1214/aop/1176989393 · links.jstor.org
[22] Takemura, A. and Kuriki, S. (2002). On the equivalence of the tube and Euler characteristic methods for the distribution of the maximum of Gaussian fields over piecewise smooth domains. Ann. Appl. Probab. 12 768–796. · Zbl 1016.60042 · doi:10.1214/aoap/1026915624
[23] Weyl, H. (1939). On the volume of tubes. Amer. J. Math. 61 461–472. · Zbl 0021.35503 · doi:10.2307/2371513
[24] Willmore, T. J. (1959). An Introduction to Differential Geometry . Oxford Univ. Press. · Zbl 0086.14401
[25] Worsley, K. J. (1994). Local maxima and the expected Euler characteristic of excursion sets of \(\chi^2\), \(F\) and \(t\) fields. Adv. in Appl. Probab. 26 13–42. · Zbl 0797.60042
[26] Worsley, K. J. (2001). Testing for signals with unknown location and scale in a \(\chi^2\) random field, with an application to fMRI. Adv. in Appl. Probab. 33 773–793. · Zbl 0991.62075 · doi:10.1239/aap/1011994029
[27] Worsley, K., Evans, A., Marrett, S. and Neelin, P. (1992). A three-dimensional statistical analysis for cbf activation studies in human brain. J. Cerebral Blood Flow and Metabolism 12 900–918.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.