×

Flips in dimension three via crepant descent method. (English) Zbl 1044.14004

The flip theorem proved by S. Mori [J. Am. Math. Soc. 1, No. 1, 117–253 (1988; Zbl 0649.14023)], is one the main breakthrough in the birational classification of projective varieties. Mori’s proof is based on a deep analysis of the possible singularities of an anticanonical section of a flipping contraction and relies on Y. Kawamata’s results [Ann. Math. (2) 127, No. 1, 93–163 (1988; Zbl 0651.14005)] to conclude from this the existence of flips for 3-folds.
In the note under review the author gives an alternative conclusion of the proof. The existence of a general elephant [J. Kollár and S. Mori, J. Am. Math. Soc. 5, No. 3, 533–703 (1992; Zbl 0773.14004)], reduces the existence of flips to the existence of log flops. The latter are proved to exist by descending induction on the number of crepant divisors via the study of terminal extractions.

MSC:

14E30 Minimal model program (Mori theory, extremal rays)
14J30 \(3\)-folds
14E05 Rational and birational maps
14E15 Global theory and resolution of singularities (algebro-geometric aspects)
PDF BibTeX XML Cite
Full Text: DOI Euclid

References:

[1] Alexeev, V.: General elephants of \(\mathbf{Q}\)-Fano \(3\)-folds. Compositio Math., 91 , 91-116 (1994). · Zbl 0813.14028
[2] Corti, A.: Semistable \(3\)-fold flips. math.AG/9505035. · Zbl 1286.14022
[3] Cutkosky, S.: Elementary contractions of Gorenstein threefolds. Math. Ann., 280 , 521-525 (1988). · Zbl 0616.14003
[4] Hayakawa, T.: Blowing ups of \(3\)-dimensional terminal singularities. Publ. Res. Inst. Math. Sci. Kyoto Univ., 35 , 515-570 (1999). · Zbl 0969.14008
[5] Hayakawa, T.: Blowing ups of \(3\)-dimensional terminal singularities, II. Publ. Res. Inst. Math. Sci. Kyoto Univ., 36 , 423-456 (2000). · Zbl 1017.14006
[6] Kawamata, Y.: Crepant blowing-up of \(3\)-dimensional canonical singularities and its application to degenerations of surfaces. Ann. of Math. (2), 127 , 93-163 (1988). · Zbl 0651.14005
[7] Kawamata, Y.: Termination of log flips for algebraic \(3\)-folds. Intern. J. Math., 3 , 653-659 (1992). · Zbl 0814.14016
[8] Kawamata, Y.: The minimal discrepancy of a \(3\)-fold terminal singularity. Appendix to [Sho93?].
[9] Kawamata, Y., Matsuda, K., and Matsuki, K.: Introduction to the minimal model problem. Algebraic Geometry, Sendai, 1985, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, pp. 283-360 (1987). · Zbl 0672.14006
[10] Kollár, J.: Flops. Nagoya Math. J., 113 , 15-36 (1989). · Zbl 0645.14004
[11] Kollár, J. et al .: Flips and abundance for algebraic threefolds. Astérisque, 211 (1992). · Zbl 0782.00075
[12] Kollár, J., and Mori, S.: Classification of three dimensional flips. J. Amer. Math. Soc., 5 , 533-703 (1992). · Zbl 0773.14004
[13] Markushevich, D.: Minimal discrepancy for a terminal cDV singularity is \(1\). J. Math. Sci. Univ. Tokyo, 3 , 445-456 (1996). · Zbl 0871.14003
[14] Mori, S.: Threefolds whose canonical bundles are not numerically effective. Ann. of Math. (2), 116 , 133-176 (1982). · Zbl 0557.14021
[15] Mori, S.: Flip theorem and the existence of minimal models for \(3\)-folds. J. Amer. Math. Soc., 1 , 117-253 (1988). · Zbl 0649.14023
[16] Reid, M.: Canonical Threefolds. Géométrie Algébrique Angers (ed. A. Beauville), Sijthoff & Noordhoff, Alphen aan den Rijn, pp. 273-310 (1980).
[17] Reid, M.: Minimal models of canonical threefolds. Algebraic Varieties and Analytic Varieties, Adv. Stud. Pure Math., 1, North-Holland, Amsterdam, pp. 131-180 (1983). · Zbl 0558.14028
[18] Shokurov, V.: \(3\)-fold log flips. Russian Acad. Sci. Izv. Math., 40 , 95-202 (1993). · Zbl 0828.14027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.