×

zbMATH — the first resource for mathematics

Existence of strong solutions for the problem of a rigid-fluid system. (English. Abridged French version) Zbl 1044.35062
Summary: This note is devoted to the study of a fluid–rigid body interaction problem. The motion of the fluid is modelled by the Navier-Stokes equations, written in an unknown bounded domain depending on the displacement of the rigid body. Our main result yields the existence and uniqueness of strong solutions, which are global provided that the rigid body does not touch the boundary.

MSC:
35Q35 PDEs in connection with fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Conca, C.; San Martı́n, J.H.; Tucsnak, M., Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. partial differential equations, 25, 5-6, 1019-1042, (2000) · Zbl 0954.35135
[2] Desjardins, B.; Esteban, M.J., Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. rational mech. anal., 146, 1, 59-71, (1999) · Zbl 0943.35063
[3] Desjardins, B.; Esteban, M.J., On weak solutions for fluid – rigid structure interaction: compressible and incompressible models, Comm. partial differential equations, 25, 7-8, 1399-1413, (2000) · Zbl 0953.35118
[4] E. Feireisl, On the motion of rigid bodies in a viscous compressible fluid, Preprint
[5] Galdi, G.P., On the steady self-propelled motion of a body in a viscous incompressible fluid, Arch. rational mech. anal., 148, 1, 53-88, (1999) · Zbl 0957.76012
[6] Grandmont, C.; Maday, Y., Existence for an unsteady fluid – structure interaction problem, Math. modeling numer. anal., 34, 3, 609-636, (2000) · Zbl 0969.76017
[7] Gunzburger, M.D.; Lee, H.-C.; Seregin, G.A., Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions, J. math. fluid mech., 2, 3, 219-266, (2000) · Zbl 0970.35096
[8] Hoffmann, K.-H.; Starovoitov, V.N., On a motion of a solid body in a viscous fluid. two-dimensional case, Adv. math. sci. appl., 9, 2, 633-648, (1999) · Zbl 0966.76016
[9] Hoffmann, K.-H.; Starovoitov, V.N., Zur bewegung einer kugel in einer zähen flüssigkeit, Doc. math., 5, 15-21, (2000), (electronic) · Zbl 0936.35125
[10] Inoue, A.; Wakimoto, M., On existence of solutions of the navier – stokes equation in a time dependent domain, J. fac. sci. univ. Tokyo sect. IA math., 24, 2, 303-319, (1977) · Zbl 0381.35066
[11] Judakov, N.V., The solvability of the problem of the motion of a rigid body in a viscous incompressible fluid, Dinamika splošn. sredy (vyp.18, dinamika zidkost. so svobod. granicami), 249-253, (1974), 255
[12] Lions, P.-L., Mathematical topics in fluid mechanics, vol. 1, Oxford lecture series in mathematics and its applications, 3, (1996), Clarendon Press, Oxford University Press New York, Incompressible Models, Oxford Science Publications
[13] San Martı́n, J.H.; Starovoitov, V.; Tucsnak, M., Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. rational mech. anal., 161, 2, 113-147, (2002) · Zbl 1018.76012
[14] Serre, D., Chute libre d’un solide dans un fluide visqueux incompressible. existence, Japan J. appl. math., 4, 1, 99-110, (1987) · Zbl 0655.76022
[15] T. Takahashi, Existence of strong solutions for the equations modelling the motion of a rigid-fluid system in a bounded domain, Preprint · Zbl 1101.35356
[16] T. Takahashi, M. Tucsnak, Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid, J. Math. Fluid Mech., to appear · Zbl 1054.35061
[17] J.L. Vázquez, E. Zuazua, Large time behavior for a simplified 1d model of fluid – solid interaction, Preprint · Zbl 1071.74017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.