Kenig, Carlos E.; Koenig, Kenneth D. On the local well-posedness of the Benjamin-Ono and modified Benjamin-Ono equations. (English) Zbl 1044.35072 Math. Res. Lett. 10, No. 5-6, 879-895 (2003). Summary: We prove that the Benjamin-Ono equation \[ \partial_t u+ H\partial^2_x u+ u\partial_x u= 0 \] is locally well-posed in \(H^s(\mathbb{R})\) for \(s> 9/8\) and that for arbitrary initial data, the modified (cubic nonlinearity) Benjamin-Ono equation \[ \partial_t u+ H\partial^2_x u+ u^2\partial_x u= 0 \] is locally well-posed in \(H^s(\mathbb{R})\) for \(s\geq 1\). Cited in 71 Documents MSC: 35Q53 KdV equations (Korteweg-de Vries equations) 76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids 76B55 Internal waves for incompressible inviscid fluids Keywords:Hilbert transform; modified Benjamin-Ono equation; Benjamin-Ono equation; locally well-posed PDF BibTeX XML Cite \textit{C. E. Kenig} and \textit{K. D. Koenig}, Math. Res. Lett. 10, No. 5--6, 879--895 (2003; Zbl 1044.35072) Full Text: DOI