×

zbMATH — the first resource for mathematics

Geometric discretisation of the Toda system. (English) Zbl 1044.37527
Summary: The Laplace sequence of discrete conjugate nets is constructed. The invariants of the nets satisfy, in full analogy to the continuous case, a system of difference equations equivalent to Hirota’s discretisation of the generalized Toda equation.

MSC:
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
39A12 Discrete version of topics in analysis
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Hirota, R, J. phys. soc. jpn., 50, 3785, (1981)
[2] Levi, D; Pilloni, L; Santini, P.M, J. phys. A, 14, 1567, (1981)
[3] Date, E; Jimbo, M; Miwa, T, J. phys. soc. jpn., 51, 4125, (1982)
[4] Toda, M, Theory of nonlinear lattices, (1981), Springer Berlin · Zbl 0465.70014
[5] Hirota, R, J. phys. soc. jpn., 43, 2074, (1977)
[6] Suris, Yu.B, Leningrad math. J., 2, 339, (1991)
[7] Kuniba, A; Nakanishi, T; Suzuki, J, Int. J. mod. phys. A, 9, 5215, (1994)
[8] Krichever, I; Lipan, O; Wiegmann, P; Zabrodin, A, Quantum integrable systems and elliptic solutions of classical discrete nonlinear equations, Esi 330, (1996), hep-th/9604080 · Zbl 0995.37054
[9] I.G. Korepanov, Algebraic integrable dynamical systems, 2 + 1-dimensional models in wholly discrete space-time, and the inhomogeneous models in 2-dimensional statistical physics, solv-int/9506003.
[10] Ablowitz, M.J; Ladik, J.F; Ablowitz, M.J; Ladik, J.F; Ablowitz, M.J, J. math. phys., J. math. phys., Stud. appl. math., 58, 17, (1978)
[11] Quispel, G.R.W; Nijhoff, F.W; Capel, H.W; van der Linden, J; Nijhoff, F.W; Capel, H.W; Wiersma, G.L; Quispel, G.R.W; Papageorgiu, V.G; Nijhoff, F.W; Capel, H.W, Physica A, Phys. lett. A, Phys. lett. A, 147, 106, (1990)
[12] Doliwa, A; Santini, P.M, J. math. phys., 36, 1259, (1995)
[13] Doliwa, A; Santini, P.M, (), 91-102
[14] Bobenko, A; Pinkall, U, Discrete surfaces with constant negative Gaussian curvature and the Hirota equation, J. diff. geom, (1994), to appear in
[15] Bobenko, A; Pinkall, U, J. reine angew. math., 475, 187, (1996)
[16] Sauer, R, Differenzengeometrie, (1970), Springer Berlin · Zbl 0199.25001
[17] Hirota, R, J. phys. soc. jpn., 43, 2079, (1977)
[18] Darboux, G, ()
[19] Weiss, J, Phys. lett. A, 137, 365, (1989)
[20] Mikhailov, A.V, JETP lett., 30, 414, (1979)
[21] L.P. Eisenhart, A treatise on the differential geometry of curves and surfaces (Ginn and Company, Boston). · JFM 40.0626.02
[22] Hirota, R, J. phys. soc. jpn., 56, 4285, (1987)
[23] Doliwa, A, Lett. math. phys., 39, 21, (1997)
[24] Doliwa, A, J. math. phys., 38, 1685, (1997)
[25] Ward, R.S, Phys. lett. A, 199, 45, (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.