zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Complex networks: Topology, dynamics and synchronization. (English) Zbl 1044.37561
Summary: Dramatic advances in the field of complex networks have been witnessed in the past few years. This paper reviews some important results in this direction of rapidly evolving research, with emphasis on the relationship between the dynamics and the topology of complex networks. Basic quantities and typical examples of various complex networks are described; and main network models are introduced, including regular, random, small-world and scale-free models. The robustness of connectivity and the epidemic dynamics in complex networks are also evaluated. To that end, synchronization in various dynamical networks are discussed according to their regular, small-world and scale-free connections.

37N99Applications of dynamical systems
94C05Analytic circuit theory
37B15Cellular automata
92B20General theory of neural networks (mathematical biology)
68T05Learning and adaptive systems
Full Text: DOI